Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
65e3fa35
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
65e3fa35
编写于
3月 21, 2023
作者:
B
Bo Zhang
提交者:
GitHub
3月 21, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dropout_nd_optimization (#51479)
* with printf * add DropOutNdForwardKernel * PR comment
上级
c74aaf67
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
165 addition
and
140 deletion
+165
-140
paddle/phi/kernels/funcs/dropout_impl.cu.h
paddle/phi/kernels/funcs/dropout_impl.cu.h
+162
-137
paddle/phi/kernels/gpu/dropout_kernel.cu
paddle/phi/kernels/gpu/dropout_kernel.cu
+3
-3
未找到文件。
paddle/phi/kernels/funcs/dropout_impl.cu.h
浏览文件 @
65e3fa35
...
...
@@ -33,15 +33,68 @@ limitations under the License. */
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/functors.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/primitive/datamover_primitives.h"
namespace
phi
{
namespace
funcs
{
template
<
typename
T1
,
typename
T2
=
T1
,
typename
OutT
=
T1
>
template
<
typename
T
>
struct
DstFunctor
{
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
MT
factor
;
HOSTDEVICE
inline
DstFunctor
(
const
float
retain_prob
,
const
bool
is_upscale_in_train
,
const
int64_t
num
)
:
retain_prob_
(
retain_prob
),
is_upscale_in_train_
(
is_upscale_in_train
),
num_
(
num
)
{
factor
=
static_cast
<
MT
>
(
1.0
f
/
retain_prob_
);
}
HOSTDEVICE
inline
T
operator
()(
const
T
src_val
,
const
uint8_t
mask
)
const
{
for
(
int
i
=
0
;
i
<
num_
;
i
++
)
{
if
(
mask
==
static_cast
<
uint8_t
>
(
1
))
{
return
is_upscale_in_train_
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
)
*
factor
)
:
static_cast
<
T
>
(
src_val
);
}
else
{
return
static_cast
<
T
>
(
0
);
}
}
}
private:
const
float
retain_prob_
;
const
bool
is_upscale_in_train_
;
const
int64_t
num_
;
};
template
<
typename
T
>
struct
MaskFunctor
{
const
float
retain_prob_
;
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
MT
factor
;
HOSTDEVICE
inline
MaskFunctor
(
const
float
retain_prob
)
:
retain_prob_
(
retain_prob
)
{
factor
=
static_cast
<
MT
>
(
1.0
f
/
retain_prob_
);
}
HOSTDEVICE
inline
void
operator
()(
T
*
dst
,
const
float
*
rand
,
int
num
)
const
{
static
constexpr
int
kCount
=
phi
::
funcs
::
uniform_distribution
<
float
>::
kReturnsCount
;
// 0 ~ kCount - 1 is dst, kCount ~ 2 * kCount - 1 is mask
#pragma unroll
for
(
int
i
=
0
;
i
<
kCount
;
i
++
)
{
dst
[
i
]
=
rand
[
i
]
<
retain_prob_
?
static_cast
<
T
>
(
1
)
:
static_cast
<
T
>
(
0
);
}
}
};
template
<
typename
T
>
struct
DstMaskFunctor
{
const
float
retain_prob_
;
const
bool
is_upscale_in_train_
;
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
1
>::
Type
;
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
MT
factor
;
HOSTDEVICE
inline
DstMaskFunctor
(
const
float
retain_prob
,
const
bool
is_upscale_in_train
)
...
...
@@ -49,34 +102,34 @@ struct DstMaskFunctor {
factor
=
static_cast
<
MT
>
(
1.0
f
/
retain_prob_
);
}
HOSTDEVICE
inline
void
operator
()(
Out
T
*
dst
,
const
T
1
*
src_val
,
const
T2
*
rand
,
HOSTDEVICE
inline
void
operator
()(
T
*
dst
,
const
T
*
src_val
,
const
float
*
rand
,
int
num
)
const
{
static
constexpr
int
kCount
=
phi
::
funcs
::
uniform_distribution
<
T2
>::
kReturnsCount
;
// 0 ~ kCount -
1 is dist
, kCount ~ 2 * kCount - 1 is mask
phi
::
funcs
::
uniform_distribution
<
float
>::
kReturnsCount
;
// 0 ~ kCount -
1 is dst
, kCount ~ 2 * kCount - 1 is mask
#pragma unroll
for
(
int
i
=
0
;
i
<
kCount
;
i
++
)
{
if
(
rand
[
i
]
<
retain_prob_
)
{
dst
[
i
]
=
is_upscale_in_train_
?
static_cast
<
T
1
>
(
static_cast
<
MT
>
(
src_val
[
i
])
*
factor
)
:
static_cast
<
T
1
>
(
src_val
[
i
]);
dst
[
i
+
kCount
]
=
static_cast
<
T
1
>
(
1
);
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
[
i
])
*
factor
)
:
static_cast
<
T
>
(
src_val
[
i
]);
dst
[
i
+
kCount
]
=
static_cast
<
T
>
(
1
);
}
else
{
dst
[
i
]
=
static_cast
<
T
1
>
(
0
);
dst
[
i
]
=
static_cast
<
T
>
(
0
);
dst
[
i
+
kCount
]
=
dst
[
i
];
}
}
}
};
template
<
typename
T
,
typename
MaskType
>
template
<
typename
T
>
__global__
void
VectorizedRandomGenerator
(
const
size_t
n
,
uint64_t
seed
,
const
float
dropout_prob
,
const
T
*
src
,
MaskType
*
mask
,
uint8_t
*
mask
,
T
*
dst
,
bool
is_upscale_in_train
,
uint64_t
increment
,
...
...
@@ -94,9 +147,10 @@ __global__ void VectorizedRandomGenerator(const size_t n,
curand_init
(
seed
,
idx
+
THREAD_ID_X
,
increment
,
&
state
);
using
SType
=
curandStatePhilox4_32_10_t
;
#endif
T
dst_mask
[
kCount
*
2
];
// 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask
T
dst_mask
[
kCount
*
2
];
// 0 ~ kCount - 1 : dst, kCount ~ 2 * kCount - 1: mask
float
rands
[
kCount
];
MaskType
mask_result
[
kCount
];
uint8_t
mask_result
[
kCount
];
using
Rand
=
phi
::
funcs
::
uniform_distribution
<
float
>
;
using
Cast
=
kps
::
IdentityFunctor
<
T
>
;
int
deal_size
=
BLOCK_NUM_X
*
kCount
;
...
...
@@ -104,19 +158,19 @@ __global__ void VectorizedRandomGenerator(const size_t n,
size_t
fix
=
idx
*
kCount
;
auto
dst_functor
=
DstMaskFunctor
<
T
,
float
>
(
1.0
f
-
dropout_prob
,
is_upscale_in_train
);
DstMaskFunctor
<
T
>
(
1.0
f
-
dropout_prob
,
is_upscale_in_train
);
for
(;
fix
<
main_offset
;
fix
+=
stride
)
{
kps
::
ReadData
<
T
,
kCount
,
1
,
false
>
(
&
dst_mask
[
0
],
src
+
fix
,
deal_size
);
kps
::
ElementwiseRandom
<
SType
,
float
,
kCount
,
Rand
>
(
&
rands
[
0
],
Rand
(),
&
state
);
// dst
kps
::
OperatorTernary
<
T
,
float
,
T
,
DstMaskFunctor
<
T
,
float
>>
(
kps
::
OperatorTernary
<
T
,
float
,
T
,
DstMaskFunctor
<
T
>>
(
&
dst_mask
[
0
],
&
dst_mask
[
0
],
&
rands
[
0
],
dst_functor
,
kCount
);
kps
::
WriteData
<
T
,
kCount
,
1
,
false
>
(
dst
+
fix
,
&
dst_mask
[
0
],
deal_size
);
// mask
kps
::
ElementwiseUnary
<
T
,
MaskType
,
kCount
,
1
,
Cast
>
(
kps
::
ElementwiseUnary
<
T
,
uint8_t
,
kCount
,
1
,
Cast
>
(
&
mask_result
[
0
],
&
dst_mask
[
kCount
],
Cast
());
kps
::
WriteData
<
MaskType
,
kCount
,
1
,
false
>
(
kps
::
WriteData
<
uint8_t
,
kCount
,
1
,
false
>
(
mask
+
fix
,
&
mask_result
[
0
],
deal_size
);
if
(
fix
>
idx
*
kCount
+
1
)
{
__syncthreads
();
...
...
@@ -128,82 +182,33 @@ __global__ void VectorizedRandomGenerator(const size_t n,
kps
::
ElementwiseRandom
<
SType
,
float
,
kCount
,
Rand
>
(
&
rands
[
0
],
Rand
(),
&
state
);
// dst
kps
::
OperatorTernary
<
T
,
float
,
T
,
DstMaskFunctor
<
T
,
float
>>
(
kps
::
OperatorTernary
<
T
,
float
,
T
,
DstMaskFunctor
<
T
>>
(
&
dst_mask
[
0
],
&
dst_mask
[
0
],
&
rands
[
0
],
dst_functor
,
kCount
);
kps
::
WriteData
<
T
,
kCount
,
1
,
true
>
(
dst
+
fix
,
&
dst_mask
[
0
],
remainder
);
// mask
kps
::
ElementwiseUnary
<
T
,
MaskType
,
kCount
,
1
,
Cast
>
(
kps
::
ElementwiseUnary
<
T
,
uint8_t
,
kCount
,
1
,
Cast
>
(
&
mask_result
[
0
],
&
dst_mask
[
kCount
],
Cast
());
kps
::
WriteData
<
MaskType
,
kCount
,
1
,
true
>
(
kps
::
WriteData
<
uint8_t
,
kCount
,
1
,
true
>
(
mask
+
fix
,
&
mask_result
[
0
],
remainder
);
__syncthreads
();
}
}
template
<
typename
T1
,
typename
T2
=
T1
,
typename
OutT
=
T1
>
struct
MaskFunctor
{
const
float
retain_prob_
;
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T1
>::
Type
;
MT
factor
;
HOSTDEVICE
inline
MaskFunctor
(
const
float
retain_prob
)
:
retain_prob_
(
retain_prob
)
{
factor
=
static_cast
<
MT
>
(
1.0
f
/
retain_prob_
);
}
HOSTDEVICE
inline
void
operator
()(
OutT
*
dst
,
const
T2
*
rand
,
int
num
)
const
{
static
constexpr
int
kCount
=
phi
::
funcs
::
uniform_distribution
<
T2
>::
kReturnsCount
;
// 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask
#pragma unroll
for
(
int
i
=
0
;
i
<
kCount
;
i
++
)
{
if
(
rand
[
i
]
<
retain_prob_
)
{
dst
[
i
]
=
static_cast
<
T1
>
(
1
);
}
else
{
dst
[
i
]
=
static_cast
<
T1
>
(
0
);
}
}
}
};
template
<
typename
T
,
typename
MaskType
>
struct
DstFunctor
{
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
MT
factor
;
HOSTDEVICE
inline
DstFunctor
(
const
float
retain_prob
,
const
bool
is_upscale_in_train
,
const
int64_t
num
)
:
retain_prob_
(
retain_prob
),
is_upscale_in_train_
(
is_upscale_in_train
),
num_
(
num
)
{
factor
=
static_cast
<
MT
>
(
1.0
f
/
retain_prob_
);
}
HOSTDEVICE
inline
T
operator
()(
const
T
src_val
,
const
MaskType
mask
)
const
{
for
(
int
i
=
0
;
i
<
num_
;
i
++
)
{
if
(
mask
==
static_cast
<
MaskType
>
(
1
))
{
return
is_upscale_in_train_
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
)
*
factor
)
:
static_cast
<
T
>
(
src_val
);
}
else
{
return
static_cast
<
T
>
(
0
);
}
}
}
private:
const
float
retain_prob_
;
const
bool
is_upscale_in_train_
;
const
int64_t
num_
;
};
template
<
typename
T
,
typename
MaskType
>
__global__
void
VectorizedGeneratorMask
(
const
size_t
n
,
uint64_t
seed
,
const
float
dropout_prob
,
const
T
*
src
,
MaskType
*
mask
,
uint64_t
increment
,
size_t
main_offset
)
{
template
<
typename
T
>
__global__
void
DropOutNdForwardKernel
(
const
size_t
n
,
uint64_t
seed
,
const
float
dropout_prob
,
const
T
*
src
,
uint8_t
*
mask
,
uint64_t
increment
,
size_t
main_offset
,
DstFunctor
<
T
>
dst_functor
,
T
*
y
,
int64_t
N
,
kps
::
details
::
BroadcastConfig
broadcast_config
)
{
// Vectorized Generate Mask
// kCount is 4 for curand_uniform4 is used
constexpr
int
kCount
=
phi
::
funcs
::
uniform_distribution
<
float
>::
kReturnsCount
;
size_t
idx
=
static_cast
<
size_t
>
(
BLOCK_ID_X
*
BLOCK_NUM_X
);
size_t
stride
=
BLOCK_NUM_X
*
GRID_NUM_X
*
kCount
;
...
...
@@ -216,28 +221,28 @@ __global__ void VectorizedGeneratorMask(const size_t n,
curand_init
(
seed
,
idx
+
THREAD_ID_X
,
increment
,
&
state
);
using
SType
=
curandStatePhilox4_32_10_t
;
#endif
T
dst_mask
[
kCount
];
// 0 ~ kCount -
1 : dst;
kCount ~ 2 * kCount - 1: mask
T
dst_mask
[
kCount
];
// 0 ~ kCount -
1 : dst,
kCount ~ 2 * kCount - 1: mask
float
rands
[
kCount
];
MaskType
mask_result
[
kCount
];
uint8_t
mask_result
[
kCount
];
using
Rand
=
phi
::
funcs
::
uniform_distribution
<
float
>
;
using
Cast
=
kps
::
IdentityFunctor
<
T
>
;
int
deal_size
=
BLOCK_NUM_X
*
kCount
;
size_t
fix
=
idx
*
kCount
;
auto
mask_functor
=
MaskFunctor
<
T
,
float
>
(
1.0
f
-
dropout_prob
);
auto
mask_functor
=
MaskFunctor
<
T
>
(
1.0
f
-
dropout_prob
);
for
(;
fix
<
main_offset
;
fix
+=
stride
)
{
kps
::
ReadData
<
T
,
kCount
,
1
,
false
>
(
&
dst_mask
[
0
],
src
+
fix
,
deal_size
);
kps
::
ElementwiseRandom
<
SType
,
float
,
kCount
,
Rand
>
(
&
rands
[
0
],
Rand
(),
&
state
);
// dst
kps
::
OperatorBinary
<
float
,
T
,
MaskFunctor
<
T
,
float
>>
(
kps
::
OperatorBinary
<
float
,
T
,
MaskFunctor
<
T
>>
(
&
dst_mask
[
0
],
&
rands
[
0
],
mask_functor
,
kCount
);
// mask
kps
::
ElementwiseUnary
<
T
,
MaskType
,
kCount
,
1
,
Cast
>
(
kps
::
ElementwiseUnary
<
T
,
uint8_t
,
kCount
,
1
,
Cast
>
(
&
mask_result
[
0
],
&
dst_mask
[
0
],
Cast
());
kps
::
WriteData
<
MaskType
,
kCount
,
1
,
false
>
(
kps
::
WriteData
<
uint8_t
,
kCount
,
1
,
false
>
(
mask
+
fix
,
&
mask_result
[
0
],
deal_size
);
if
(
fix
>
idx
*
kCount
+
1
)
{
__syncthreads
();
...
...
@@ -249,28 +254,30 @@ __global__ void VectorizedGeneratorMask(const size_t n,
kps
::
ElementwiseRandom
<
SType
,
float
,
kCount
,
Rand
>
(
&
rands
[
0
],
Rand
(),
&
state
);
// dst
kps
::
OperatorBinary
<
float
,
T
,
MaskFunctor
<
T
,
float
>>
(
kps
::
OperatorBinary
<
float
,
T
,
MaskFunctor
<
T
>>
(
&
dst_mask
[
0
],
&
rands
[
0
],
mask_functor
,
kCount
);
// mask
kps
::
ElementwiseUnary
<
T
,
MaskType
,
kCount
,
1
,
Cast
>
(
kps
::
ElementwiseUnary
<
T
,
uint8_t
,
kCount
,
1
,
Cast
>
(
&
mask_result
[
0
],
&
dst_mask
[
0
],
Cast
());
kps
::
WriteData
<
MaskType
,
kCount
,
1
,
true
>
(
kps
::
WriteData
<
uint8_t
,
kCount
,
1
,
true
>
(
mask
+
fix
,
&
mask_result
[
0
],
remainder
);
__syncthreads
();
}
}
inline
void
CalcBroadcastedMask
(
const
phi
::
GPUContext
&
dev_ctx
,
const
phi
::
DenseTensor
&
mask
,
phi
::
DenseTensor
*
broadcasted_mask
)
{
// The broadcast of mask can be combined to the following ElementwiseKernel
// when the BroadcastKernel supports different input types.
dev_ctx
.
template
Alloc
<
uint8_t
>(
broadcasted_mask
);
std
::
vector
<
const
phi
::
DenseTensor
*>
ins
=
{
&
mask
};
std
::
vector
<
phi
::
DenseTensor
*>
outs
=
{
broadcasted_mask
};
phi
::
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kUnary
,
uint8_t
,
uint8_t
>
(
dev_ctx
,
ins
,
&
outs
,
-
1
,
kps
::
IdentityFunctor
<
uint8_t
>
());
// Broadcast mask data and do elementwise operaiton with DstFunctor
CUDA_KERNEL_LOOP
(
i
,
N
)
{
uint32_t
offset
=
0u
;
uint32_t
idx
=
i
;
// Use (j < phi::DDim::kMaxRank) conditiion rather than
// (j < broadcast_config.rank) for (#pragma unroll)
#pragma unroll
for
(
int
j
=
0
;
j
<
phi
::
DDim
::
kMaxRank
;
++
j
)
{
if
(
j
==
broadcast_config
.
rank
)
break
;
auto
fast_divmoder
=
broadcast_config
.
divmoders
[
j
].
Divmod
(
idx
);
idx
=
fast_divmoder
.
val
[
0
];
offset
+=
broadcast_config
.
strides
[
j
]
*
fast_divmoder
.
val
[
1
];
}
y
[
i
]
=
dst_functor
(
src
[
i
],
mask
[
offset
]);
}
}
template
<
typename
T
,
typename
MT
>
...
...
@@ -285,17 +292,19 @@ void ScaleByDropoutFactor(const phi::GPUContext& dev_ctx,
}
template
<
typename
T
>
void
DropoutFwGPUKernelDriver
(
const
phi
::
GPUContext
&
dev_ctx
,
bool
is_test
,
float
dropout_prob
,
bool
upscale_in_train
,
bool
is_fix_seed
,
int
seed_val
,
const
phi
::
DenseTensor
&
x
,
const
phi
::
DenseTensor
*
seed
,
phi
::
DenseTensor
*
mask
,
phi
::
DenseTensor
*
y
,
bool
is_dropout_nd
=
false
)
{
void
DropoutFwGPUKernelDriver
(
const
phi
::
GPUContext
&
dev_ctx
,
bool
is_test
,
float
dropout_prob
,
bool
upscale_in_train
,
bool
is_fix_seed
,
int
seed_val
,
const
phi
::
DenseTensor
&
x
,
const
phi
::
DenseTensor
*
seed
,
phi
::
DenseTensor
*
mask
,
phi
::
DenseTensor
*
y
,
bool
is_dropout_nd
=
false
,
const
std
::
vector
<
int
>&
axis
=
std
::
vector
<
int
>
())
{
int64_t
x_numel
=
x
.
numel
();
auto
stream
=
dev_ctx
.
stream
();
auto
*
x_data
=
x
.
data
<
T
>
();
...
...
@@ -344,26 +353,32 @@ void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx,
size
/
(
block_size
*
kVecSize
)
*
(
block_size
*
kVecSize
);
if
(
is_dropout_nd
)
{
VectorizedGeneratorMask
<
T
,
uint8_t
>
auto
dst_functor
=
DstFunctor
<
T
>
(
1.0
f
-
dropout_prob
,
upscale_in_train
,
x_numel
);
auto
input_x_dims
=
x
.
dims
();
auto
mask_dims
=
mask
->
dims
();
std
::
vector
<
int64_t
>
out_dims
=
phi
::
vectorize
<
int64_t
>
(
input_x_dims
);
std
::
vector
<
int64_t
>
in_dims
=
phi
::
vectorize
<
int64_t
>
(
mask_dims
);
reverse
(
out_dims
.
begin
(),
out_dims
.
end
());
reverse
(
in_dims
.
begin
(),
in_dims
.
end
());
kps
::
details
::
BroadcastConfig
broadcast_config
(
out_dims
,
in_dims
,
x
.
dims
().
size
());
DropOutNdForwardKernel
<
T
>
<<<
grid_size
,
block_size
,
0
,
stream
>>>
(
size
,
seed_data
,
dropout_prob
,
x_data
,
mask_data
,
increment
,
main_offset
);
phi
::
DenseTensor
broadcasted_mask
;
broadcasted_mask
.
Resize
(
x
.
dims
());
CalcBroadcastedMask
(
dev_ctx
,
*
mask
,
&
broadcasted_mask
);
auto
dst_functor
=
DstFunctor
<
T
,
uint8_t
>
(
1.0
f
-
dropout_prob
,
upscale_in_train
,
x_numel
);
std
::
vector
<
const
phi
::
DenseTensor
*>
ins
=
{
&
x
,
&
broadcasted_mask
};
std
::
vector
<
phi
::
DenseTensor
*>
outs
=
{
y
};
phi
::
funcs
::
ElementwiseKernel
<
T
>
(
dev_ctx
,
ins
,
&
outs
,
dst_functor
);
main_offset
,
dst_functor
,
y_data
,
y
->
numel
(),
broadcast_config
);
}
else
{
#define PD_DROPOUT_KERNEL_NAME VectorizedRandomGenerator<T
, uint8_t
>
#define PD_DROPOUT_KERNEL_NAME VectorizedRandomGenerator<T>
PD_RECORD_CUDA_GRAPH_RANDOM_KERNEL
(
!
is_fix_seed
,
PD_DROPOUT_KERNEL_NAME
,
grid_size
,
...
...
@@ -397,14 +412,14 @@ void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx,
}
}
template
<
typename
T
,
typename
MaskType
>
template
<
typename
T
>
struct
CudaDropoutGradFunctor
{
using
MT
=
typename
phi
::
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
explicit
CudaDropoutGradFunctor
(
const
MT
factor
)
:
factor_
(
factor
)
{}
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
MaskType
mask
)
const
{
const
uint8_t
mask
)
const
{
return
static_cast
<
T
>
(
static_cast
<
MT
>
(
dout
)
*
static_cast
<
MT
>
(
mask
)
*
factor_
);
}
...
...
@@ -433,7 +448,17 @@ void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx,
phi
::
DenseTensor
broadcasted_mask
;
if
(
is_dropout_nd
)
{
broadcasted_mask
.
Resize
(
grad_y
.
dims
());
CalcBroadcastedMask
(
dev_ctx
,
mask
,
&
broadcasted_mask
);
dev_ctx
.
template
Alloc
<
uint8_t
>(
&
broadcasted_mask
);
std
::
vector
<
const
phi
::
DenseTensor
*>
broadcast_ins
=
{
&
mask
};
std
::
vector
<
phi
::
DenseTensor
*>
broadcast_outs
=
{
&
broadcasted_mask
};
phi
::
funcs
::
BroadcastKernel
<
phi
::
ElementwiseType
::
kUnary
,
uint8_t
,
uint8_t
>
(
dev_ctx
,
broadcast_ins
,
&
broadcast_outs
,
-
1
,
kps
::
IdentityFunctor
<
uint8_t
>
());
}
std
::
vector
<
const
phi
::
DenseTensor
*>
ins
=
{
...
...
@@ -449,12 +474,12 @@ void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx,
}
else
{
MT
factor
=
static_cast
<
MT
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
phi
::
funcs
::
ElementwiseKernel
<
T
>
(
dev_ctx
,
ins
,
&
outs
,
CudaDropoutGradFunctor
<
T
,
uint8_t
>
(
factor
));
dev_ctx
,
ins
,
&
outs
,
CudaDropoutGradFunctor
<
T
>
(
factor
));
}
}
else
{
MT
factor
=
static_cast
<
MT
>
(
1.0
f
);
phi
::
funcs
::
ElementwiseKernel
<
T
>
(
dev_ctx
,
ins
,
&
outs
,
CudaDropoutGradFunctor
<
T
,
uint8_t
>
(
factor
));
dev_ctx
,
ins
,
&
outs
,
CudaDropoutGradFunctor
<
T
>
(
factor
));
}
}
}
...
...
paddle/phi/kernels/gpu/dropout_kernel.cu
浏览文件 @
65e3fa35
...
...
@@ -45,8 +45,7 @@ void DropoutRawKernel(const Context& dev_ctx,
x
,
seed_tensor
.
get_ptr
(),
mask
,
out
,
false
);
out
);
}
template
<
typename
T
,
typename
Context
>
...
...
@@ -76,7 +75,8 @@ void DropoutNdKernel(const Context& dev_ctx,
seed_tensor
.
get_ptr
(),
mask
,
out
,
true
);
true
,
axis
);
}
}
// namespace phi
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录