未验证 提交 65ce6886 编写于 作者: C co63oc 提交者: GitHub

Fix typos in send_v2_op.cu.cc (#53904)

上级 972581d8
...@@ -40,24 +40,24 @@ framework::DDim recv_shape_info(const platform::Place &place, ...@@ -40,24 +40,24 @@ framework::DDim recv_shape_info(const platform::Place &place,
"to send the shape info.")); "to send the shape info."));
} }
phi::DataType shape_dytpe = phi::DataType::INT32; phi::DataType shape_dtype = phi::DataType::INT32;
ncclDataType_t nccl_dtype = ncclDataType_t nccl_dtype =
platform::ToNCCLDataType(framework::TransToProtoVarType(shape_dytpe)); platform::ToNCCLDataType(framework::TransToProtoVarType(shape_dtype));
// step1: recv the shape size // step1: recv the shape size
phi::DenseTensor gpu_shape_size_tensor(shape_dytpe); phi::DenseTensor gpu_shape_size_tensor(shape_dtype);
if (!group) { if (!group) {
gpu_shape_size_tensor.Resize({1}); gpu_shape_size_tensor.Resize({1});
gpu_shape_size_tensor.mutable_data(place, shape_dytpe); gpu_shape_size_tensor.mutable_data(place, shape_dtype);
auto *gpu_data = gpu_shape_size_tensor.data<int>(); auto *gpu_data = gpu_shape_size_tensor.data<int>();
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
gpu_data, 1, nccl_dtype, peer, comm->comm(), stream)); gpu_data, 1, nccl_dtype, peer, comm->comm(), stream));
} }
// copy the shape size tensor to cpu // copy the shape size tensor to cpu
phi::DenseTensor *cpu_shape_size_tensor = new phi::DenseTensor(shape_dytpe); phi::DenseTensor *cpu_shape_size_tensor = new phi::DenseTensor(shape_dtype);
cpu_shape_size_tensor->Resize({1}); cpu_shape_size_tensor->Resize({1});
cpu_shape_size_tensor->mutable_data(platform::CPUPlace(), shape_dytpe); cpu_shape_size_tensor->mutable_data(platform::CPUPlace(), shape_dtype);
if (group) { if (group) {
std::vector<phi::DenseTensor> shape_size_tensor; std::vector<phi::DenseTensor> shape_size_tensor;
shape_size_tensor.emplace_back(*cpu_shape_size_tensor); shape_size_tensor.emplace_back(*cpu_shape_size_tensor);
...@@ -71,19 +71,19 @@ framework::DDim recv_shape_info(const platform::Place &place, ...@@ -71,19 +71,19 @@ framework::DDim recv_shape_info(const platform::Place &place,
VLOG(3) << "recv the shape size: " << shape_size << " from peer"; VLOG(3) << "recv the shape size: " << shape_size << " from peer";
// step2: recv the shape // step2: recv the shape
phi::DenseTensor gpu_shape_tensor(shape_dytpe); phi::DenseTensor gpu_shape_tensor(shape_dtype);
if (!group) { if (!group) {
gpu_shape_tensor.Resize({shape_size}); gpu_shape_tensor.Resize({shape_size});
gpu_shape_tensor.mutable_data(place, shape_dytpe); gpu_shape_tensor.mutable_data(place, shape_dtype);
auto *gpu_shape_data = gpu_shape_tensor.data<int>(); auto *gpu_shape_data = gpu_shape_tensor.data<int>();
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv( PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
gpu_shape_data, shape_size, nccl_dtype, peer, comm->comm(), stream)); gpu_shape_data, shape_size, nccl_dtype, peer, comm->comm(), stream));
} }
// copy the shape tensor to cpu // copy the shape tensor to cpu
phi::DenseTensor *cpu_shape_tensor = new phi::DenseTensor(shape_dytpe); phi::DenseTensor *cpu_shape_tensor = new phi::DenseTensor(shape_dtype);
cpu_shape_tensor->Resize({shape_size}); cpu_shape_tensor->Resize({shape_size});
cpu_shape_tensor->mutable_data(platform::CPUPlace(), shape_dytpe); cpu_shape_tensor->mutable_data(platform::CPUPlace(), shape_dtype);
if (group) { if (group) {
std::vector<phi::DenseTensor> shape_tensor; std::vector<phi::DenseTensor> shape_tensor;
shape_tensor.emplace_back(*cpu_shape_tensor); shape_tensor.emplace_back(*cpu_shape_tensor);
......
...@@ -39,16 +39,16 @@ void send_shape_info(const phi::DenseTensor& x, ...@@ -39,16 +39,16 @@ void send_shape_info(const phi::DenseTensor& x,
"NCCLComm and Stream should be provided if use NCCL " "NCCLComm and Stream should be provided if use NCCL "
"to send the shape info.")); "to send the shape info."));
} }
phi::DataType shape_dytpe = phi::DataType::INT32; phi::DataType shape_dtype = phi::DataType::INT32;
ncclDataType_t nccl_dtype = ncclDataType_t nccl_dtype =
platform::ToNCCLDataType(framework::TransToProtoVarType(shape_dytpe)); platform::ToNCCLDataType(framework::TransToProtoVarType(shape_dtype));
auto dims = x.dims(); auto dims = x.dims();
int shape_size = dims.size(); int shape_size = dims.size();
// step1: send the shape size // step1: send the shape size
phi::DenseTensor cpu_shape_size_tensor(shape_dytpe); phi::DenseTensor cpu_shape_size_tensor(shape_dtype);
cpu_shape_size_tensor.Resize({1}); cpu_shape_size_tensor.Resize({1});
cpu_shape_size_tensor.mutable_data(platform::CPUPlace(), shape_dytpe); cpu_shape_size_tensor.mutable_data(platform::CPUPlace(), shape_dtype);
auto* cpu_data = cpu_shape_size_tensor.data<int>(); auto* cpu_data = cpu_shape_size_tensor.data<int>();
cpu_data[0] = shape_size; cpu_data[0] = shape_size;
...@@ -58,9 +58,9 @@ void send_shape_info(const phi::DenseTensor& x, ...@@ -58,9 +58,9 @@ void send_shape_info(const phi::DenseTensor& x,
auto shape_size_task = group->Send(shape_size_tensor, peer); auto shape_size_task = group->Send(shape_size_tensor, peer);
} else { } else {
// copy the shape size tensor to gpu and send // copy the shape size tensor to gpu and send
phi::DenseTensor* gpu_shape_size_tensor = new phi::DenseTensor(shape_dytpe); phi::DenseTensor* gpu_shape_size_tensor = new phi::DenseTensor(shape_dtype);
gpu_shape_size_tensor->Resize({1}); gpu_shape_size_tensor->Resize({1});
gpu_shape_size_tensor->mutable_data(place, shape_dytpe); gpu_shape_size_tensor->mutable_data(place, shape_dtype);
framework::TensorCopySync( framework::TensorCopySync(
cpu_shape_size_tensor, place, gpu_shape_size_tensor); cpu_shape_size_tensor, place, gpu_shape_size_tensor);
PADDLE_ENFORCE_GPU_SUCCESS( PADDLE_ENFORCE_GPU_SUCCESS(
...@@ -74,9 +74,9 @@ void send_shape_info(const phi::DenseTensor& x, ...@@ -74,9 +74,9 @@ void send_shape_info(const phi::DenseTensor& x,
VLOG(3) << "send the shape size: " << shape_size << " to peer"; VLOG(3) << "send the shape size: " << shape_size << " to peer";
// step2: send the shape // step2: send the shape
phi::DenseTensor cpu_shape_tensor(shape_dytpe); phi::DenseTensor cpu_shape_tensor(shape_dtype);
cpu_shape_tensor.Resize({shape_size}); cpu_shape_tensor.Resize({shape_size});
cpu_shape_tensor.mutable_data(platform::CPUPlace(), shape_dytpe); cpu_shape_tensor.mutable_data(platform::CPUPlace(), shape_dtype);
auto* cpu_shape_data = cpu_shape_tensor.data<int>(); auto* cpu_shape_data = cpu_shape_tensor.data<int>();
for (int i = 0; i < shape_size; ++i) { for (int i = 0; i < shape_size; ++i) {
cpu_shape_data[i] = dims[i]; cpu_shape_data[i] = dims[i];
...@@ -88,9 +88,9 @@ void send_shape_info(const phi::DenseTensor& x, ...@@ -88,9 +88,9 @@ void send_shape_info(const phi::DenseTensor& x,
auto shape_task = group->Send(shape_tensor, peer); auto shape_task = group->Send(shape_tensor, peer);
} else { } else {
// copy the shape tensor to gpu and send // copy the shape tensor to gpu and send
phi::DenseTensor* gpu_shape_tensor = new phi::DenseTensor(shape_dytpe); phi::DenseTensor* gpu_shape_tensor = new phi::DenseTensor(shape_dtype);
gpu_shape_tensor->Resize({shape_size}); gpu_shape_tensor->Resize({shape_size});
gpu_shape_tensor->mutable_data(place, shape_dytpe); gpu_shape_tensor->mutable_data(place, shape_dtype);
framework::TensorCopySync(cpu_shape_tensor, place, gpu_shape_tensor); framework::TensorCopySync(cpu_shape_tensor, place, gpu_shape_tensor);
PADDLE_ENFORCE_GPU_SUCCESS( PADDLE_ENFORCE_GPU_SUCCESS(
platform::dynload::ncclSend(gpu_shape_tensor->data<int>(), platform::dynload::ncclSend(gpu_shape_tensor->data<int>(),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册