Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
65c17315
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
65c17315
编写于
12月 21, 2022
作者:
W
Wangzheee
提交者:
GitHub
12月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference]optimize token prune for no varlen (#49094)
* optimize token prune for no varlen
上级
4cdeab7b
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
546 addition
and
450 deletion
+546
-450
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
.../fluid/inference/tensorrt/convert/fused_token_prune_op.cc
+18
-15
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
.../inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
+281
-410
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
...d/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
+24
-3
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
+223
-22
未找到文件。
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
浏览文件 @
65c17315
...
...
@@ -38,6 +38,17 @@ class FusedTokenPruneOpConverter : public OpConverter {
auto
output_name
=
op_desc
.
Output
(
"SlimmedX"
)[
0
];
auto
out_inds_name
=
op_desc
.
Output
(
"CLSInds"
)[
0
];
if
(
engine_
->
with_dynamic_shape
())
{
// reduce_sum: (-1,headsize,token_length,token_length) ->
// (-1,token_length)
uint32_t
reduce_dim
=
0
;
reduce_dim
|=
1
<<
1
;
// 00000000000000000000000000000010
reduce_dim
|=
1
<<
2
;
// 00000000000000000000000000000110
bool
keep_dim
=
false
;
nvinfer1
::
ReduceOperation
reduce_type
=
nvinfer1
::
ReduceOperation
::
kSUM
;
auto
*
reduce_sum_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
Attn
,
reduce_type
,
reduce_dim
,
keep_dim
);
auto
*
Reduced
=
reduce_sum_layer
->
getOutput
(
0
);
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
...
...
@@ -53,21 +64,10 @@ class FusedTokenPruneOpConverter : public OpConverter {
auto
*
pos_id
=
engine_
->
GetITensor
(
"pos_id"
);
auto
*
mask_id
=
engine_
->
GetITensor
(
"mask_id"
);
// reduce_sum: (-1,headsize,token_length,token_length) ->
// (-1,token_length)
uint32_t
reduce_dim
=
0
;
reduce_dim
|=
1
<<
1
;
// 00000000000000000000000000000010
reduce_dim
|=
1
<<
2
;
// 00000000000000000000000000000110
bool
keep_dim
=
false
;
nvinfer1
::
ReduceOperation
reduce_type
=
nvinfer1
::
ReduceOperation
::
kSUM
;
auto
*
reduce_sum_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
Attn
,
reduce_type
,
reduce_dim
,
keep_dim
);
// reduce_sum_layer->getOutput(0)->setType(reduce_sum_layer->getInput(0)->getType());
auto
*
Reduced
=
reduce_sum_layer
->
getOutput
(
0
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Reduced
,
X
,
Mask
,
NewMask
,
word_id
,
pos_id
,
mask_id
};
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
7
,
plugin
);
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
itensors
.
size
(),
plugin
);
// inputs'number: 7
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
...
...
@@ -87,10 +87,13 @@ class FusedTokenPruneOpConverter : public OpConverter {
layer
->
getOutput
(
4
)
->
setName
(
"mask_id_after_token_prune"
);
engine_
->
SetITensor
(
"mask_id"
,
layer
->
getOutput
(
4
));
}
else
{
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Attn
,
X
,
Mask
,
NewMask
};
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Reduced
,
X
,
Mask
,
NewMask
};
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
itensors
.
size
(),
plugin
);
// inputs'number: 4
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
layer
->
getOutput
(
1
)
->
setName
(
out_inds_name
.
c_str
());
engine_
->
SetITensor
(
out_inds_name
,
layer
->
getOutput
(
1
));
}
...
...
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
浏览文件 @
65c17315
此差异已折叠。
点击以展开。
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
浏览文件 @
65c17315
...
...
@@ -93,12 +93,33 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
int
nb_outputs
)
TRT_NOEXCEPT
override
{
max_batchs_
=
in
[
1
].
max
.
d
[
0
];
max_token_length_
=
in
[
1
].
max
.
d
[
1
];
int32_t
padding_token_length
;
if
(
max_token_length_
<=
64
)
{
padding_token_length
=
64
;
}
else
if
(
max_token_length_
<=
128
)
{
padding_token_length
=
128
;
}
else
if
(
max_token_length_
<=
256
)
{
padding_token_length
=
256
;
}
else
if
(
max_token_length_
<=
384
)
{
padding_token_length
=
384
;
}
else
if
(
max_token_length_
<=
512
)
{
padding_token_length
=
512
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Token_prune'token_length(max) must <= 512"
));
}
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMalloc
(
&
pruned_token_lengths_
,
(
max_batchs_
+
1
)
*
sizeof
(
int32_t
)));
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMalloc
(
&
token_index_
,
max_batchs_
*
max_token_length_
*
sizeof
(
int32_t
)));
&
token_index_
,
max_batchs_
*
padding_token_length
*
sizeof
(
int32_t
)));
int32_t
type_size
=
4
;
if
(
in
[
0
].
desc
.
type
==
nvinfer1
::
DataType
::
kHALF
)
{
type_size
=
2
;
}
else
{
type_size
=
4
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMalloc
(
&
padding_scores_
,
max_batchs_
*
max_token_length_
*
sizeof
(
half
)
));
&
padding_scores_
,
max_batchs_
*
padding_token_length
*
type_size
));
}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
...
...
@@ -129,7 +150,7 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
int32_t
*
token_index_
;
int32_t
max_batchs_
;
int32_t
max_token_length_
;
half
*
padding_scores_
;
void
*
padding_scores_
;
};
class
FusedTokenPrunePluginDynamicCreator
:
public
nvinfer1
::
IPluginCreator
{
...
...
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
浏览文件 @
65c17315
...
...
@@ -352,24 +352,24 @@ class TensorRTDynamicTestFusedTokenPrune : public ::testing::Test {
ctx_
->
PartialInitWithAllocator
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"attn"
,
{
4
,
1
,
4
,
4
}},
{
"attn"
,
{
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"attn"
,
{
4
,
1
,
4
,
4
}},
{
"attn"
,
{
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
optim_input_shape
=
{
{
"attn"
,
{
4
,
1
,
4
,
4
}},
{
"attn"
,
{
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
engine_
=
new
TensorRTEngine
(
16
,
1
<<
10
,
AnalysisConfig
::
Precision
::
k
Half
,
AnalysisConfig
::
Precision
::
k
Float32
,
nullptr
,
0
,
min_input_shape
,
...
...
@@ -391,7 +391,7 @@ class TensorRTDynamicTestFusedTokenPrune : public ::testing::Test {
}
}
void
PrepareInputOutput
(
const
std
::
vector
<
std
::
vector
<
float
16
>>
inputs
,
void
PrepareInputOutput
(
const
std
::
vector
<
std
::
vector
<
float
>>
inputs
,
std
::
vector
<
std
::
vector
<
int
>>
output_shapes
)
{
LOG
(
INFO
)
<<
"PrepareInputOutput"
;
int
num_inputs
=
inputs
.
size
();
...
...
@@ -423,15 +423,15 @@ TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) {
#if IS_TRT_VERSION_GE(8000)
tensorrt
::
plugin
::
TrtPluginRegistry
::
Global
()
->
RegistToTrt
();
auto
*
attn
=
engine_
->
DeclareInput
(
"attn"
,
nvinfer1
::
DataType
::
k
HALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
4
,
4
});
"attn"
,
nvinfer1
::
DataType
::
k
FLOAT
,
nvinfer1
::
Dims2
{
-
1
,
4
});
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
k
HALF
,
nvinfer1
::
Dims3
{
-
1
,
4
,
1
});
"x"
,
nvinfer1
::
DataType
::
k
FLOAT
,
nvinfer1
::
Dims3
{
-
1
,
4
,
1
});
auto
*
mask
=
engine_
->
DeclareInput
(
"mask"
,
nvinfer1
::
DataType
::
k
HALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
4
,
4
});
"mask"
,
nvinfer1
::
DataType
::
k
FLOAT
,
nvinfer1
::
Dims4
{
-
1
,
1
,
4
,
4
});
auto
*
new_mask
=
engine_
->
DeclareInput
(
"new_mask"
,
nvinfer1
::
DataType
::
k
HALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
2
,
2
});
"new_mask"
,
nvinfer1
::
DataType
::
k
FLOAT
,
nvinfer1
::
Dims4
{
-
1
,
1
,
2
,
2
});
plugin
::
FusedTokenPrunePluginDynamic
*
plugin
=
new
plugin
::
FusedTokenPrunePluginDynamic
(
tru
e
,
new
plugin
::
FusedTokenPrunePluginDynamic
(
/*with_fp16*/
fals
e
,
/*keep_first_token*/
false
,
/*keep_order*/
true
,
/*flag_varseqlen*/
false
);
...
...
@@ -449,18 +449,215 @@ TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) {
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
6
);
LOG
(
INFO
)
<<
"create input"
;
std
::
vector
<
float16
>
attn_v
(
64
);
std
::
vector
<
float
>
attn_v
(
16
);
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
attn_v
[
j
*
4
+
k
]
=
k
;
}
}
std
::
vector
<
float
>
x_v
(
16
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
x_v
[
i
*
4
+
j
]
=
4
-
j
;
}
}
std
::
vector
<
float
>
mask_v
(
64
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
attn_v
[
i
*
16
+
j
*
4
+
k
]
=
k
;
mask_v
[
i
*
16
+
j
*
4
+
k
]
=
1
;
}
}
}
std
::
vector
<
float
>
new_mask_v
(
16
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
2
;
++
j
)
{
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
new_mask_v
[
i
*
4
+
j
*
2
+
k
]
=
1
;
}
}
}
LOG
(
INFO
)
<<
"create output"
;
std
::
vector
<
int
>
out_slimmed_x_shape
{
4
,
2
,
1
};
std
::
vector
<
int
>
out_cls_ins_shape
{
4
,
2
};
PrepareInputOutput
({
attn_v
,
x_v
,
mask_v
,
new_mask_v
},
{
out_slimmed_x_shape
,
out_cls_ins_shape
});
auto
*
attn_gpu_data
=
inputs_
[
0
].
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
x_gpu_data
=
inputs_
[
1
].
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
mask_gpu_data
=
inputs_
[
2
].
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
new_mask_gpu_data
=
inputs_
[
3
].
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
slimmed_x_gpu_data
=
outputs_
[
0
].
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
cls_inds_gpu_data
=
outputs_
[
1
].
mutable_data
<
int32_t
>
(
ctx_
->
GetPlace
());
LOG
(
INFO
)
<<
"create buffers"
;
std
::
vector
<
void
*>
buffers
(
6
);
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
attn_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
x_gpu_data
);
buffers
[
2
]
=
reinterpret_cast
<
void
*>
(
mask_gpu_data
);
buffers
[
3
]
=
reinterpret_cast
<
void
*>
(
new_mask_gpu_data
);
buffers
[
4
]
=
reinterpret_cast
<
void
*>
(
slimmed_x_gpu_data
);
buffers
[
5
]
=
reinterpret_cast
<
void
*>
(
cls_inds_gpu_data
);
LOG
(
INFO
)
<<
"Execute"
;
engine_
->
Execute
(
4
,
&
buffers
,
ctx_
->
stream
());
std
::
vector
<
float
>
slimmed_x_v
(
8
);
std
::
vector
<
int32_t
>
cls_inds_v
;
LOG
(
INFO
)
<<
"GetOutput"
;
GetOutput
(
slimmed_x_v
,
cls_inds_v
);
// slimmed_x_v: [[4,3,2,1],[4,3,2,1],[4,3,2,1],[4,3,2,1]] ->
// [[2,1],[2,1],[2,1],[2,1]]
ASSERT_EQ
(
slimmed_x_v
[
0
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
1
],
1
);
ASSERT_EQ
(
slimmed_x_v
[
2
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
3
],
1
);
ASSERT_EQ
(
slimmed_x_v
[
4
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
5
],
1
);
ASSERT_EQ
(
slimmed_x_v
[
6
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
7
],
1
);
LOG
(
INFO
)
<<
"finish"
;
#endif
}
class
TensorRTDynamicTestFusedTokenPruneHalf
:
public
::
testing
::
Test
{
protected:
void
SetUp
()
override
{
ctx_
=
new
phi
::
GPUContext
(
platform
::
CUDAPlace
(
0
));
ctx_
->
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
platform
::
CUDAPlace
(
0
),
ctx_
->
stream
())
.
get
());
ctx_
->
SetHostAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
ctx_
->
SetZeroAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetZeroAllocator
(
platform
::
CUDAPlace
(
0
))
.
get
());
ctx_
->
SetPinnedAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CUDAPinnedPlace
())
.
get
());
ctx_
->
PartialInitWithAllocator
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"attn"
,
{
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"attn"
,
{
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
optim_input_shape
=
{
{
"attn"
,
{
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
engine_
=
new
TensorRTEngine
(
16
,
1
<<
10
,
AnalysisConfig
::
Precision
::
kHalf
,
nullptr
,
0
,
min_input_shape
,
max_input_shape
,
optim_input_shape
,
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
(),
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
(),
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
(),
false
,
phi
::
DataType
::
FLOAT16
,
NaiveLogger
::
Global
());
engine_
->
InitNetwork
();
}
void
TearDown
()
override
{
if
(
engine_
)
{
delete
engine_
;
engine_
=
nullptr
;
}
}
void
PrepareInputOutput
(
const
std
::
vector
<
std
::
vector
<
float16
>>
inputs
,
std
::
vector
<
std
::
vector
<
int
>>
output_shapes
)
{
LOG
(
INFO
)
<<
"PrepareInputOutput"
;
int
num_inputs
=
inputs
.
size
();
int
num_outputs
=
output_shapes
.
size
();
inputs_
.
resize
(
num_inputs
);
outputs_
.
resize
(
num_outputs
);
for
(
int
i
=
0
;
i
<
num_inputs
;
++
i
)
{
paddle
::
framework
::
TensorFromVector
(
inputs
[
i
],
*
ctx_
,
&
inputs_
[
i
]);
}
for
(
int
i
=
0
;
i
<
num_outputs
;
++
i
)
{
outputs_
[
i
].
Resize
(
phi
::
make_ddim
(
output_shapes
[
i
]));
}
}
void
GetOutput
(
std
::
vector
<
float
>
&
slimmed_x
,
// NOLINT
std
::
vector
<
int32_t
>
&
cls_inds
)
{
// NOLINT
paddle
::
framework
::
TensorToVector
(
outputs_
[
0
],
*
ctx_
,
&
slimmed_x
);
paddle
::
framework
::
TensorToVector
(
outputs_
[
1
],
*
ctx_
,
&
cls_inds
);
}
protected:
std
::
vector
<
phi
::
DenseTensor
>
inputs_
;
std
::
vector
<
phi
::
DenseTensor
>
outputs_
;
TensorRTEngine
*
engine_
;
phi
::
GPUContext
*
ctx_
;
};
TEST_F
(
TensorRTDynamicTestFusedTokenPruneHalf
,
test_fused_token_prune
)
{
#if IS_TRT_VERSION_GE(8000)
tensorrt
::
plugin
::
TrtPluginRegistry
::
Global
()
->
RegistToTrt
();
auto
*
attn
=
engine_
->
DeclareInput
(
"attn"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims2
{
-
1
,
4
});
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims3
{
-
1
,
4
,
1
});
auto
*
mask
=
engine_
->
DeclareInput
(
"mask"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
4
,
4
});
auto
*
new_mask
=
engine_
->
DeclareInput
(
"new_mask"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
2
,
2
});
plugin
::
FusedTokenPrunePluginDynamic
*
plugin
=
new
plugin
::
FusedTokenPrunePluginDynamic
(
/*with_fp16*/
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
,
/*flag_varseqlen*/
false
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
attn
,
x
,
mask
,
new_mask
};
auto
*
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
PADDLE_ENFORCE_NOT_NULL
(
layer
,
platform
::
errors
::
InvalidArgument
(
"TRT fused_token_prune layer building failed."
));
std
::
vector
<
std
::
string
>
output_tensor_names
{
"out_slimmed_x"
,
"out_cls_inds"
};
for
(
size_t
i
=
0
;
i
<
2
;
i
++
)
{
layer
->
getOutput
(
i
)
->
setName
(
output_tensor_names
[
i
].
c_str
());
engine_
->
DeclareOutput
(
layer
,
i
,
output_tensor_names
[
i
]);
}
engine_
->
FreezeNetwork
();
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
6
);
LOG
(
INFO
)
<<
"create input"
;
std
::
vector
<
float16
>
attn_v
(
16
);
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
attn_v
[
j
*
4
+
k
]
=
k
;
}
}
std
::
vector
<
float16
>
x_v
(
16
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
x_v
[
i
*
4
+
j
]
=
1
;
x_v
[
i
*
4
+
j
]
=
4
-
j
;
}
}
std
::
vector
<
float16
>
mask_v
(
64
);
...
...
@@ -509,20 +706,24 @@ TEST_F(TensorRTDynamicTestFusedTokenPrune, test_fused_token_prune) {
engine_
->
Execute
(
4
,
&
buffers
,
ctx_
->
stream
());
std
::
vector
<
float
>
slimmed_x_v
;
std
::
vector
<
float
>
slimmed_x_v
(
8
)
;
std
::
vector
<
int32_t
>
cls_inds_v
;
LOG
(
INFO
)
<<
"GetOutput"
;
GetOutput
(
slimmed_x_v
,
cls_inds_v
);
ASSERT_EQ
(
cls_inds_v
[
0
],
2
);
ASSERT_EQ
(
cls_inds_v
[
1
],
3
);
ASSERT_EQ
(
cls_inds_v
[
2
],
2
);
ASSERT_EQ
(
cls_inds_v
[
3
],
3
);
ASSERT_EQ
(
cls_inds_v
[
4
],
2
);
ASSERT_EQ
(
cls_inds_v
[
5
],
3
);
ASSERT_EQ
(
cls_inds_v
[
6
],
2
);
ASSERT_EQ
(
cls_inds_v
[
7
],
3
);
// slimmed_x_v: [[4,3,2,1],[4,3,2,1],[4,3,2,1],[4,3,2,1]] ->
// [[2,1],[2,1],[2,1],[2,1]]
ASSERT_EQ
(
slimmed_x_v
[
0
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
1
],
1
);
ASSERT_EQ
(
slimmed_x_v
[
2
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
3
],
1
);
ASSERT_EQ
(
slimmed_x_v
[
4
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
5
],
1
);
ASSERT_EQ
(
slimmed_x_v
[
6
],
2
);
ASSERT_EQ
(
slimmed_x_v
[
7
],
1
);
LOG
(
INFO
)
<<
"finish"
;
#endif
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录