Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6535a7b0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6535a7b0
编写于
8月 08, 2017
作者:
D
dongzhihong
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'origin/develop' into random_op
上级
23ac8459
e31a469e
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
214 addition
and
76 deletion
+214
-76
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+0
-6
paddle/framework/operator.h
paddle/framework/operator.h
+9
-1
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+20
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+2
-1
paddle/operators/net_op.h
paddle/operators/net_op.h
+9
-0
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+149
-3
python/paddle/v2/framework/tests/op_test_util.py
python/paddle/v2/framework/tests/op_test_util.py
+4
-3
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+14
-2
python/paddle/v2/framework/tests/test_softmax_op.py
python/paddle/v2/framework/tests/test_softmax_op.py
+6
-58
未找到文件。
paddle/framework/op_registry.h
浏览文件 @
6535a7b0
...
...
@@ -260,12 +260,6 @@ class OpRegistry {
return
CreateOp
(
op_desc
.
type
(),
inputs
,
outputs
,
attrs
);
}
static
bool
SupportGPU
(
const
std
::
string
&
op_type
)
{
OperatorWithKernel
::
OpKernelKey
key
;
key
.
place_
=
platform
::
GPUPlace
();
return
OperatorWithKernel
::
AllOpKernels
().
at
(
op_type
).
count
(
key
)
!=
0
;
}
static
std
::
shared_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
)
{
PADDLE_ENFORCE
(
!
op
.
IsNetOp
(),
"Use framework::Backward to get backward ops"
);
...
...
paddle/framework/operator.h
浏览文件 @
6535a7b0
...
...
@@ -88,6 +88,8 @@ class OperatorBase {
virtual
bool
IsNetOp
()
const
{
return
false
;
}
virtual
bool
SupportGPU
()
const
{
return
false
;
}
/// rename inputs outputs name
void
Rename
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
...
...
@@ -308,7 +310,7 @@ class OperatorWithKernel : public OperatorBase {
using
OpKernelMap
=
std
::
unordered_map
<
OpKernelKey
,
std
::
unique_ptr
<
OpKernel
>
,
OpKernelHash
>
;
void
InferShape
(
const
Scope
&
scope
)
const
{
void
InferShape
(
const
Scope
&
scope
)
const
override
{
InferShape
(
InferShapeContext
(
this
,
scope
));
}
...
...
@@ -324,6 +326,12 @@ class OperatorWithKernel : public OperatorBase {
return
g_all_op_kernels
;
}
bool
SupportGPU
()
const
override
{
OperatorWithKernel
::
OpKernelKey
key
;
key
.
place_
=
platform
::
GPUPlace
();
return
OperatorWithKernel
::
AllOpKernels
().
at
(
type_
).
count
(
key
)
!=
0
;
}
protected:
virtual
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
=
0
;
};
...
...
paddle/framework/pybind.cc
浏览文件 @
6535a7b0
...
...
@@ -59,6 +59,26 @@ void ExposeOperator(ClassType &m) {
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
vector
<
std
::
string
>
{
return
op
.
outputs_
;
})
.
def
(
"inputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
vector
<
std
::
string
>
{
return
op
.
inputs_
;
})
.
def
(
"support_gpu"
,
&
ClassType
::
type
::
SupportGPU
)
.
def
(
"temp_outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
vector
<
std
::
string
>
{
auto
iter
=
op
.
attrs_
.
find
(
"temporary_index"
);
std
::
vector
<
std
::
string
>
ret
;
if
(
iter
==
op
.
attrs_
.
end
())
{
return
ret
;
}
else
{
auto
tmp_idx
=
boost
::
get
<
std
::
vector
<
int
>>
(
iter
->
second
);
ret
.
reserve
(
tmp_idx
.
size
());
for
(
auto
&
index
:
tmp_idx
)
{
ret
.
push_back
(
op
.
outputs_
.
at
(
index
));
}
return
ret
;
}
})
.
def
(
"__str__"
,
&
ClassType
::
type
::
DebugString
);
}
...
...
@@ -204,8 +224,6 @@ All parameter, weight, gradient are variables in Paddle.
return
OpRegistry
::
CreateOp
(
desc
);
});
operator_base
.
def_static
(
"support_gpu"
,
&
OpRegistry
::
SupportGPU
);
operator_base
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
6535a7b0
...
...
@@ -70,7 +70,8 @@ REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp,
ops
::
OnehotCrossEntropyOpMaker
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy
,
ops
::
OnehotCrossEntropyOpKernel
<
ops
::
CPUPlace
,
float
>
);
REGISTER_GRADIENT_OP
(
onehot_cross_entropy
,
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOp
);
REGISTER_OP_CPU_KERNEL
(
onehot_cross_entropy_grad
,
ops
::
OnehotCrossEntropyGradientOpKernel
<
ops
::
CPUPlace
,
float
>
);
paddle/operators/net_op.h
浏览文件 @
6535a7b0
...
...
@@ -65,6 +65,15 @@ class NetOp : public framework::OperatorBase {
}
}
bool
SupportGPU
()
const
override
{
for
(
auto
&
op
:
ops_
)
{
if
(
!
op
->
SupportGPU
())
{
return
false
;
}
}
return
true
;
}
/**
* @brief Add an operator by ptr
*/
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
6535a7b0
...
...
@@ -13,6 +13,7 @@ py_test(test_protobuf SRCS test_protobuf.py)
py_test
(
test_add_two_op SRCS test_add_two_op.py
)
py_test
(
test_sigmoid_op SRCS test_sigmoid_op.py
)
py_test
(
test_softmax_op SRCS test_softmax_op.py
)
py_test
(
test_cross_entropy_op SRCS test_cross_entropy_op.py
)
py_test
(
test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py
)
py_test
(
gradient_checker SRCS gradient_checker.py
)
...
...
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
6535a7b0
import
unittest
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
import
unittest
__all__
=
[
'get_numeric_gradient'
]
def
create_op
(
op_type
):
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
for
out_name
in
Operator
.
get_op_output_names
(
op_type
):
kwargs
[
out_name
]
=
out_name
return
Operator
(
op_type
,
**
kwargs
)
def
grad_var_name
(
var_name
):
return
var_name
+
"@GRAD"
def
get_numeric_gradient
(
op
,
input_values
,
output_name
,
input_to_check
,
delta
=
1e-2
,
delta
=
0.005
,
local_scope
=
None
):
"""
Get Numeric Gradient for an operator's input.
...
...
@@ -76,6 +91,113 @@ def get_numeric_gradient(op,
return
gradient_flat
.
reshape
(
tensor_to_check
.
get_dims
())
class
GradientChecker
(
unittest
.
TestCase
):
def
__is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
):
for
name
in
numeric_grads
:
op_grad
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
is_close
=
numpy
.
allclose
(
numeric_grads
[
name
],
op_grad
,
rtol
=
max_relative_error
,
atol
=
100
)
if
not
is_close
:
return
False
return
True
def
check_grad
(
self
,
forward_op
,
input_vars
,
inputs_to_check
,
output_name
,
no_grad_set
=
None
,
only_cpu
=
False
,
max_relative_error
=
0.005
):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
if
no_grad_set
is
None
:
no_grad_set
=
set
()
tmp_outs
=
forward_op
.
temp_outputs
()
no_tmp_out
=
filter
(
lambda
name
:
name
not
in
tmp_outs
,
forward_op
.
outputs
())
if
len
(
no_tmp_out
)
!=
1
:
raise
ValueError
(
"non temp out_names should be 1"
)
in_names
=
forward_op
.
inputs
()
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get operator gradient according to different device
for
place
in
places
:
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
forward_op
.
outputs
():
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
forward_op
.
outputs
():
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
if
isinstance
(
place
,
core
.
CPUPlace
):
msg
=
"CPU kernel gradient is not close to numeric gradient"
else
:
if
isinstance
(
place
,
core
.
GPUPlace
):
msg
=
"GPU kernel gradient is not close to numeric gradient"
else
:
raise
ValueError
(
"unknown place "
+
type
(
place
))
self
.
assertTrue
(
self
.
__is_close
(
numeric_grad
,
scope
,
max_relative_error
),
msg
)
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
...
...
@@ -87,4 +209,28 @@ if __name__ == '__main__':
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
python/paddle/v2/framework/tests/op_test_util.py
浏览文件 @
6535a7b0
import
paddle.v2.framework.core
as
core
import
unittest
import
numpy
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
...
...
@@ -24,7 +23,7 @@ class OpTestMeta(type):
scope
=
core
.
Scope
()
kwargs
=
dict
()
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
()
and
core
.
Operator
.
support_gpu
(
self
.
type
)
:
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
...
...
@@ -53,6 +52,8 @@ class OpTestMeta(type):
kwargs
[
attr_name
]
=
self
.
attrs
[
attr_name
]
op
=
Operator
(
self
.
type
,
**
kwargs
)
if
isinstance
(
place
,
core
.
GPUPlace
)
and
not
op
.
support_gpu
():
return
op
.
infer_shape
(
scope
)
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
6535a7b0
import
unittest
import
numpy
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
Test
SGD
(
unittest
.
TestCase
):
class
Test
CrossEntropy
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
...
...
@@ -20,7 +21,18 @@ class TestSGD(unittest.TestCase):
self
.
outputs
=
{
'Y'
:
numpy
.
array
(
Y
).
astype
(
"float32"
)}
# TODO(superjom) add gradient check
class
CrossEntropyGradOpTest
(
GradientChecker
):
def
test_softmax_grad
(
self
):
op
=
create_op
(
"onehot_cross_entropy"
)
batch_size
=
100
class_num
=
10
inputs
=
{
"X"
:
numpy
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
),
"label"
:
(
class_num
/
2
)
*
numpy
.
ones
(
batch_size
).
astype
(
"int32"
)
}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_softmax_op.py
浏览文件 @
6535a7b0
import
unittest
import
numpy
as
np
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
...
...
@@ -25,62 +24,11 @@ class TestSoftmaxOp(unittest.TestCase):
}
class
TestSoftmaxGradOp
(
unittest
.
TestCase
):
def
test_softmax_grad
(
self
):
op
=
Operator
(
'softmax'
,
X
=
"X"
,
Y
=
"Y"
)
backward_op
=
core
.
Operator
.
backward
(
op
,
set
())
self
.
assertEqual
(
backward_op
.
type
(),
"softmax_grad"
)
expected
=
'''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
self
.
assertEqual
(
expected
,
str
(
backward_op
))
batch_size
=
3
class_num
=
5
# Initialize X and add 1e-2 for numerical stability
Y
=
np
.
random
.
rand
(
batch_size
,
class_num
).
astype
(
np
.
float32
)
Y
=
Y
+
1e-2
dY
=
np
.
random
.
rand
(
batch_size
,
class_num
).
astype
(
np
.
float32
)
# Reference implementation of cross entropy with soft labels
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
batch_size
):
d
=
np
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
expected
=
label_softmax_grad
(
Y
,
dY
)
scope
=
core
.
Scope
()
places
=
[]
places
.
append
(
core
.
CPUPlace
())
if
core
.
is_compile_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
for
place
in
places
:
y
=
scope
.
new_var
(
"Y"
)
y_tensor
=
y
.
get_tensor
()
y_tensor
.
set_dims
([
batch_size
,
class_num
])
y_tensor
.
alloc_float
(
place
)
y_tensor
.
set
(
Y
,
place
)
dy
=
scope
.
new_var
(
"Y@GRAD"
)
dy_tensor
=
dy
.
get_tensor
()
dy_tensor
.
set_dims
([
batch_size
,
class_num
])
dy_tensor
.
alloc_float
(
place
)
dy_tensor
.
set
(
dY
,
place
)
x
=
scope
.
new_var
(
"X"
)
dx
=
scope
.
new_var
(
"X@GRAD"
)
tensor
=
scope
.
find_var
(
"X@GRAD"
).
get_tensor
()
backward_op
.
infer_shape
(
scope
)
self
.
assertEqual
([
batch_size
,
class_num
],
tensor
.
shape
())
ctx
=
core
.
DeviceContext
.
create
(
place
)
backward_op
.
run
(
scope
,
ctx
)
actual
=
np
.
array
(
tensor
)
np
.
testing
.
assert_almost_equal
(
actual
,
expected
,
decimal
=
3
)
class
SoftmaxGradOpTest
(
GradientChecker
):
def
test_softmax
(
self
):
op
=
create_op
(
"softmax"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录