Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
64d7a302
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
64d7a302
编写于
3月 21, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Extract SSAGraph
上级
8dec4ad7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
98 addition
and
93 deletion
+98
-93
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+98
-91
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+0
-2
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
64d7a302
...
...
@@ -37,6 +37,86 @@ using details::ScaleLossGradOpHandle;
using
details
::
VarHandle
;
using
details
::
VarHandleBase
;
struct
SSAGraph
{
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
map
<
int
,
VarHandle
>>>
vars_
;
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
dep_vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
ops_
;
};
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
static
void
PolishGraphToSupportDataHazards
(
SSAGraph
*
graph
)
{
for
(
auto
&
var_map
:
graph
->
vars_
)
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
return
;
}
auto
it_new
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
auto
*
write_op
=
it_new
->
second
.
generated_op_
;
auto
&
read_ops
=
it_old
->
second
.
pending_ops_
;
auto
*
ex_write_op
=
it_old
->
second
.
generated_op_
;
if
(
ex_write_op
==
nullptr
)
{
// Nobody write this var.
continue
;
}
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
auto
*
dep_var
=
new
DummyVarHandle
();
read_op
->
AddOutput
(
dep_var
);
write_op
->
AddInput
(
dep_var
);
graph
->
dep_vars_
.
emplace
(
dep_var
);
}
}
}
}
}
static
VarHandle
*
CreateOrGetLatestVarHandle
(
SSAGraph
*
graph
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
var_holders
=
graph
->
vars_
[
place_offset
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
static
void
CreateOpOutput
(
SSAGraph
*
graph
,
OpHandleBase
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
vars
=
graph
->
vars_
[
place_offset
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
AddOutput
(
&
var
);
}
class
ParallelExecutorPrivate
{
public:
explicit
ParallelExecutorPrivate
(
size_t
num_threads
,
...
...
@@ -44,7 +124,7 @@ class ParallelExecutorPrivate {
:
places_
(
places
),
fetch_dev_ctxs_
(
places
),
pool_
(
num_threads
<=
1
?
nullptr
:
new
ThreadPool
(
num_threads
))
{
vars_
.
resize
(
places
.
size
());
graph_
.
vars_
.
resize
(
places
.
size
());
}
std
::
vector
<
platform
::
Place
>
places_
;
...
...
@@ -54,35 +134,13 @@ class ParallelExecutorPrivate {
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
map
<
int
,
VarHandle
>>>
vars_
;
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
dep_vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
ops_
;
SSAGraph
graph_
;
// Use a simpler thread pool, might be faster.
std
::
unique_ptr
<
ThreadPool
>
pool_
;
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
var_holders
=
vars_
[
place_offset
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
void
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
&
pending_vars
,
...
...
@@ -113,17 +171,6 @@ class ParallelExecutorPrivate {
op_run
();
}
}
void
GenerateVar
(
OpHandleBase
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
,
size_t
place_offset
)
{
auto
&
vars
=
vars_
[
place_offset
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
AddOutput
(
&
var
);
}
};
ParallelExecutor
::
ParallelExecutor
(
...
...
@@ -189,21 +236,22 @@ void ParallelExecutor::ConstructDependencyGraph(
auto
&
p
=
member_
->
places_
[
i
];
auto
*
s
=
member_
->
local_scopes_
[
i
];
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
,
s
,
p
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
member_
->
graph_
.
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
,
s
,
p
));
auto
*
op_handle
=
member_
->
graph_
.
ops_
.
back
().
get
();
op_handle
->
dev_ctx_
[
p
]
=
const_cast
<
platform
::
DeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
));
auto
var_names
=
op
->
InputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
VarHandle
*
var
=
member_
->
GetVarHandle
(
each_var_name
,
p
,
i
);
VarHandle
*
var
=
CreateOrGetLatestVarHandle
(
&
member_
->
graph_
,
each_var_name
,
p
,
i
);
op_handle
->
AddInput
(
var
);
}
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
member_
->
GenerateVar
(
op_handle
,
each_var_name
,
p
,
i
);
CreateOpOutput
(
&
member_
->
graph_
,
op_handle
,
each_var_name
,
p
,
i
);
}
if
(
is_forwarding
)
{
...
...
@@ -212,7 +260,7 @@ void ParallelExecutor::ConstructDependencyGraph(
op_handle
=
new
ScaleLossGradOpHandle
(
this
->
member_
->
local_scopes_
.
size
(),
s
,
p
,
member_
->
nccl_ctxs_
->
DevCtx
(
p
));
member_
->
ops_
.
emplace_back
(
op_handle
);
member_
->
graph_
.
ops_
.
emplace_back
(
op_handle
);
// FIXME: Currently ScaleLossGradOp only use device_count as scale
// factor. So it does not depend on any other operators.
...
...
@@ -220,7 +268,8 @@ void ParallelExecutor::ConstructDependencyGraph(
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
member_
->
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
,
i
);
CreateOpOutput
(
&
member_
->
graph_
,
op_handle
,
loss_var_name
+
"@GRAD"
,
p
,
i
);
change_forward
=
true
;
}
}
...
...
@@ -235,13 +284,13 @@ void ParallelExecutor::ConstructDependencyGraph(
for
(
auto
&
og
:
var_names
)
{
if
(
grads
.
count
(
og
)
!=
0
)
{
// is param grad
// Insert NCCL AllReduce Op
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
->
graph_
.
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
->
local_scopes_
,
member_
->
places_
,
*
member_
->
nccl_ctxs_
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
auto
*
op_handle
=
member_
->
graph_
.
ops_
.
back
().
get
();
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
auto
&
p
=
member_
->
places_
[
i
];
auto
&
vars
=
member_
->
vars_
[
i
][
og
];
auto
&
vars
=
member_
->
graph_
.
vars_
[
i
][
og
];
if
(
vars
.
empty
())
{
// This device has no data. continue.
continue
;
...
...
@@ -265,49 +314,7 @@ void ParallelExecutor::ConstructDependencyGraph(
Dependency graph has been constructed. However, there are still data
harzaeds need to be handled.
*/
PolishGraphToSupportDataHazards
();
}
/**
* We only handle write after read(WAR), since it should not have a write
* after write in program. If there are write after write operators, we need
* prune them.
*
* https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
*/
void
ParallelExecutor
::
PolishGraphToSupportDataHazards
()
const
{
for
(
auto
&
var_map
:
member_
->
vars_
)
{
for
(
auto
&
name_pair
:
var_map
)
{
if
(
name_pair
.
second
.
size
()
<=
1
)
{
return
;
}
auto
it_new
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
++
it_old
;
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
auto
*
write_op
=
it_new
->
second
.
generated_op_
;
auto
&
read_ops
=
it_old
->
second
.
pending_ops_
;
auto
*
ex_write_op
=
it_old
->
second
.
generated_op_
;
if
(
ex_write_op
==
nullptr
)
{
// Nobody write this var.
continue
;
}
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
if
(
read_op
==
write_op
)
{
// Read Write is the same op.
continue
;
}
auto
*
dep_var
=
new
DummyVarHandle
();
read_op
->
AddOutput
(
dep_var
);
write_op
->
AddInput
(
dep_var
);
member_
->
dep_vars_
.
emplace
(
dep_var
);
}
}
}
}
PolishGraphToSupportDataHazards
(
&
member_
->
graph_
);
}
void
ParallelExecutor
::
BCastParamsToGPUs
(
...
...
@@ -365,7 +372,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
pending_ops
;
std
::
vector
<
DummyVarHandle
>
dummy_vars
;
for
(
auto
&
var_map
:
member_
->
vars_
)
{
for
(
auto
&
var_map
:
member_
->
graph_
.
vars_
)
{
for
(
auto
&
name_pair
:
var_map
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
pending_vars
[
&
version_pair
.
second
]
=
...
...
@@ -374,13 +381,13 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
}
}
for
(
auto
&
var
:
member_
->
dep_vars_
)
{
for
(
auto
&
var
:
member_
->
graph_
.
dep_vars_
)
{
pending_vars
[
var
.
get
()]
=
var
->
generated_op_
==
nullptr
;
}
std
::
vector
<
OpHandleBase
*>
to_run
;
for
(
auto
&
op
:
member_
->
ops_
)
{
for
(
auto
&
op
:
member_
->
graph_
.
ops_
)
{
if
(
op
->
inputs_
.
empty
())
{
// Special case, Op has no input.
to_run
.
emplace_back
(
op
.
get
());
}
else
{
...
...
@@ -391,7 +398,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandleBase
*>>
fetched_vars
;
for
(
auto
&
fetch_var_name
:
fetch_tensors
)
{
for
(
auto
&
var_map
:
member_
->
vars_
)
{
for
(
auto
&
var_map
:
member_
->
graph_
.
vars_
)
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
&
it
->
second
.
rbegin
()
->
second
);
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
64d7a302
...
...
@@ -52,8 +52,6 @@ class ParallelExecutor {
const
std
::
string
&
loss_var_name
)
const
;
void
BuildNCCLCommunicator
()
const
;
void
PolishGraphToSupportDataHazards
()
const
;
};
}
// namespace framework
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录