提交 641f32da 编写于 作者: N nhzlx

add softmax op converter

上级 943950c1
...@@ -44,7 +44,7 @@ class DfgPassManagerImpl final : public DfgPassManager { ...@@ -44,7 +44,7 @@ class DfgPassManagerImpl final : public DfgPassManager {
if (FLAGS_inference_analysis_enable_tensorrt_subgraph_engine) { if (FLAGS_inference_analysis_enable_tensorrt_subgraph_engine) {
auto trt_teller = [&](const Node* node) { auto trt_teller = [&](const Node* node) {
std::unordered_set<std::string> teller_set( std::unordered_set<std::string> teller_set(
{"elementwise_add", "mul", "conv2d", "pool2d", "relu"}); {"elementwise_add", "mul", "conv2d", "pool2d", "relu", "softmax"});
if (!node->IsFunction()) return false; if (!node->IsFunction()) return false;
const auto* func = static_cast<const Function*>(node); const auto* func = static_cast<const Function*>(node);
......
# Add TRT tests # Add TRT tests
nv_library(tensorrt_converter nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
activation_op.cc activation_op.cc softmax_op.cc
DEPS tensorrt_engine operator scope framework_proto op_registry) DEPS tensorrt_engine operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS nv_test(test_op_converter SRCS test_op_converter.cc DEPS
...@@ -21,3 +21,6 @@ nv_test(test_trt_pool2d_op SRCS test_pool2d_op.cc pool2d_op.cc ...@@ -21,3 +21,6 @@ nv_test(test_trt_pool2d_op SRCS test_pool2d_op.cc pool2d_op.cc
nv_test(test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc nv_test(test_trt_elementwise_op SRCS test_elementwise_op.cc elementwise_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine elementwise_add_op SERIAL) DEPS ${FLUID_CORE_MODULES} tensorrt_engine elementwise_add_op SERIAL)
nv_test(test_trt_softmax_op SRCS test_softmax_op.cc softmax_op.cc
DEPS ${FLUID_CORE_MODULES} tensorrt_engine softmax_op SERIAL)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* SoftMaxOp, ISoftMaxLayer in TRT. This Layer doesn't has weights.
*/
class SoftMaxOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4)
<< "convert a fluid softmax op to tensorrt softmax layer without bias";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, SoftMax,
*const_cast<nvinfer1::ITensor*>(input1));
auto output_name = op_desc.Output("Out")[0];
engine_->SetITensor(output_name, layer->getOutput(0));
if (test_mode) {
engine_->DeclareOutput(output_name);
}
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(softmax);
REGISTER_TRT_OP_CONVERTER(softmax, SoftMaxOpConverter);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(SoftMaxOpConverter, main) {
framework::Scope scope;
std::unordered_set<std::string> parameters;
TRTConvertValidation validator(8, parameters, scope, 1000);
std::vector<int> tensor_shape{8, 10};
validator.DeclInputVar("softmax-X", tensor_shape,
nvinfer1::DimsCHW(10, 1, 1));
validator.DeclOutputVar("softmax-Out", nvinfer1::DimsCHW(10, 1, 1));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("softmax");
desc.SetInput("X", {"softmax-X"});
desc.SetOutput("Out", {"softmax-Out"});
LOG(INFO) << "set OP";
validator.SetOp(*desc.Proto());
LOG(INFO) << "execute";
validator.Execute(3);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(softmax);
...@@ -79,6 +79,12 @@ class TRTConvertValidation { ...@@ -79,6 +79,12 @@ class TRTConvertValidation {
} }
// Declare a Variable as input with random initialization. // Declare a Variable as input with random initialization.
void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
const nvinfer1::Dims& trt_dims) {
DeclVar(name, tensor_dims);
engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
}
void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) { void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
DeclVar(name, dims); DeclVar(name, dims);
// Declare TRT inputs. // Declare TRT inputs.
...@@ -94,12 +100,18 @@ class TRTConvertValidation { ...@@ -94,12 +100,18 @@ class TRTConvertValidation {
DeclVar(name, dims); DeclVar(name, dims);
} }
// Declare a variable in a fluid Scope. void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
bool is_param = false) {
platform::CPUPlace place; platform::CPUPlace place;
platform::CPUDeviceContext ctx(place); platform::CPUDeviceContext ctx(place);
auto* x = scope_.Var(name);
auto* x_tensor = x->GetMutable<framework::LoDTensor>();
x_tensor->Resize(framework::make_ddim(dim_vec));
RandomizeTensor(x_tensor, place, ctx);
}
// Declare a variable in a fluid Scope.
void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
bool is_param = false) {
// Init Fluid tensor. // Init Fluid tensor.
std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims); std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
// There is no batchsize in ITensor's shape, but We should add it to // There is no batchsize in ITensor's shape, but We should add it to
...@@ -107,10 +119,8 @@ class TRTConvertValidation { ...@@ -107,10 +119,8 @@ class TRTConvertValidation {
// if_add_batch_ flag is true, add the max batchsize to dim_vec. // if_add_batch_ flag is true, add the max batchsize to dim_vec.
if (is_param != true && if_add_batch_ == true) if (is_param != true && if_add_batch_ == true)
dim_vec.insert(dim_vec.begin(), max_batch_size_); dim_vec.insert(dim_vec.begin(), max_batch_size_);
auto* x = scope_.Var(name);
auto* x_tensor = x->GetMutable<framework::LoDTensor>(); DeclVar(name, dim_vec);
x_tensor->Resize(framework::make_ddim(dim_vec));
RandomizeTensor(x_tensor, place, ctx);
} }
void SetOp(const framework::proto::OpDesc& desc) { void SetOp(const framework::proto::OpDesc& desc) {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册