Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
63d4d05a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
63d4d05a
编写于
5月 06, 2022
作者:
A
Allen Guo
提交者:
GitHub
5月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[IPU] update UTs 0 (#42516)
* update UTs 0 * fix ci * fix ci 3
上级
1b5647d7
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
514 addition
and
1400 deletion
+514
-1400
python/paddle/fluid/tests/unittests/ipu/op_test_ipu.py
python/paddle/fluid/tests/unittests/ipu/op_test_ipu.py
+156
-65
python/paddle/fluid/tests/unittests/ipu/test_activation_x_op_ipu.py
...dle/fluid/tests/unittests/ipu/test_activation_x_op_ipu.py
+14
-57
python/paddle/fluid/tests/unittests/ipu/test_arg_max_op_ipu.py
...n/paddle/fluid/tests/unittests/ipu/test_arg_max_op_ipu.py
+20
-65
python/paddle/fluid/tests/unittests/ipu/test_assign_op_ipu.py
...on/paddle/fluid/tests/unittests/ipu/test_assign_op_ipu.py
+32
-148
python/paddle/fluid/tests/unittests/ipu/test_avg_shard_ipu.py
...on/paddle/fluid/tests/unittests/ipu/test_avg_shard_ipu.py
+25
-64
python/paddle/fluid/tests/unittests/ipu/test_batch_norm_op_ipu.py
...addle/fluid/tests/unittests/ipu/test_batch_norm_op_ipu.py
+17
-59
python/paddle/fluid/tests/unittests/ipu/test_batchs_per_step_simple_ipu.py
...id/tests/unittests/ipu/test_batchs_per_step_simple_ipu.py
+0
-87
python/paddle/fluid/tests/unittests/ipu/test_cast_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_cast_op_ipu.py
+51
-156
python/paddle/fluid/tests/unittests/ipu/test_concat_op_ipu.py
...on/paddle/fluid/tests/unittests/ipu/test_concat_op_ipu.py
+19
-64
python/paddle/fluid/tests/unittests/ipu/test_conv_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_conv_op_ipu.py
+17
-61
python/paddle/fluid/tests/unittests/ipu/test_cross_entropy2_op_ipu.py
...e/fluid/tests/unittests/ipu/test_cross_entropy2_op_ipu.py
+24
-79
python/paddle/fluid/tests/unittests/ipu/test_cumsum_op_ipu.py
...on/paddle/fluid/tests/unittests/ipu/test_cumsum_op_ipu.py
+15
-53
python/paddle/fluid/tests/unittests/ipu/test_dropout_op_ipu.py
...n/paddle/fluid/tests/unittests/ipu/test_dropout_op_ipu.py
+16
-58
python/paddle/fluid/tests/unittests/ipu/test_elemetwise_x_op_ipu.py
...dle/fluid/tests/unittests/ipu/test_elemetwise_x_op_ipu.py
+17
-57
python/paddle/fluid/tests/unittests/ipu/test_equal_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_equal_op_ipu.py
+17
-60
python/paddle/fluid/tests/unittests/ipu/test_expand_op_ipu.py
...on/paddle/fluid/tests/unittests/ipu/test_expand_op_ipu.py
+24
-103
python/paddle/fluid/tests/unittests/ipu/test_fill_any_like_op_ipu.py
...le/fluid/tests/unittests/ipu/test_fill_any_like_op_ipu.py
+15
-56
python/paddle/fluid/tests/unittests/ipu/test_fill_constant_op_ipu.py
...le/fluid/tests/unittests/ipu/test_fill_constant_op_ipu.py
+18
-50
python/paddle/fluid/tests/unittests/ipu/test_flatten_op_ipu.py
...n/paddle/fluid/tests/unittests/ipu/test_flatten_op_ipu.py
+17
-58
未找到文件。
python/paddle/fluid/tests/unittests/ipu/op_test_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -15,9 +15,10 @@
import
os
import
random
import
unittest
import
numpy
as
np
from
enum
import
IntEnum
from
typing
import
Dict
,
List
,
Optional
import
numpy
as
np
import
paddle
import
paddle.static
...
...
@@ -33,31 +34,27 @@ map_np_dtype_to_fluid_dtype = {
}
def
np_dtype_to_fluid_str
(
dtype
:
np
.
dtype
)
->
str
:
return
map_np_dtype_to_fluid_dtype
[
dtype
.
name
]
class
ExecutionModeFull
(
IntEnum
):
# Run fp32 model on cpu
CPU_FP32
=
1
# Run fp32 model on ipu
IPU_FP32
=
2
# Convert model to fp16 using
popart transform
# Convert model to fp16 using
mixed-precision approch
# All parameters will be converted to fp16
# TODO rename to IPU_FP16
IPU_POPART_FP16
=
3
# Mix-precision mode, using `paddle.static.amp.fp16_guard()` to control the
# precision of each operator
IPU_MIXED_PRECISION
=
4
IPU_FP16
=
3
class
ExecutionMode
(
IntEnum
):
CPU_FP32
=
ExecutionModeFull
.
CPU_FP32
IPU_FP32
=
ExecutionModeFull
.
IPU_FP32
IPU_POPART_FP16
=
ExecutionModeFull
.
IPU_POPART_FP16
IPU_FP16
=
ExecutionModeFull
.
IPU_FP16
def
np_dtype_to_fluid_str
(
dtype
:
np
.
dtype
)
->
str
:
return
map_np_dtype_to_fluid_dtype
[
dtype
.
name
]
class
IPUOpTest
(
unittest
.
TestCase
):
class
IPUTest
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
# Get random seeds
...
...
@@ -67,12 +64,7 @@ class IPUOpTest(unittest.TestCase):
cls
.
SEED
=
2021
np
.
random
.
seed
(
cls
.
SEED
)
random
.
seed
(
cls
.
SEED
)
# For ipu, most ops support fp16
cls
.
amp_list
=
paddle
.
static
.
amp
.
CustomOpLists
(
custom_black_list
=
[],
custom_white_list
=
[])
cls
.
amp_list
.
unsupported_list
=
{}
cls
.
amp_list
.
black_list
=
{}
paddle
.
seed
(
cls
.
SEED
)
# Enable paddle static graph mode
paddle
.
enable_static
()
...
...
@@ -83,6 +75,7 @@ class IPUOpTest(unittest.TestCase):
np
.
random
.
set_state
(
cls
.
_np_rand_state
)
random
.
setstate
(
cls
.
_py_rand_state
)
# Check if ipumodel mode is enabled
@
classmethod
def
use_ipumodel
(
cls
):
if
'POPLAR_IPUMODEL'
not
in
os
.
environ
:
...
...
@@ -92,6 +85,69 @@ class IPUOpTest(unittest.TestCase):
if
flag
.
upper
()
in
[
'1'
,
"TRUE"
]:
return
True
# Decorator for static graph building
def
static_graph
(
builder
):
def
wrapper
(
self
,
*
args
,
**
kwargs
):
self
.
scope
=
paddle
.
static
.
Scope
()
self
.
main_prog
=
paddle
.
static
.
Program
()
self
.
startup_prog
=
paddle
.
static
.
Program
()
self
.
main_prog
.
random_seed
=
self
.
SEED
self
.
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
self
.
scope
):
with
paddle
.
utils
.
unique_name
.
guard
(
paddle
.
utils
.
unique_name
.
generate
(
''
)):
with
paddle
.
static
.
program_guard
(
self
.
main_prog
,
self
.
startup_prog
):
builder
(
self
,
*
args
,
**
kwargs
)
return
wrapper
# Cast a fp32 model to a full-fp16 model
@
classmethod
def
cast_model_to_fp16
(
cls
,
main_program
):
amp_list
=
paddle
.
static
.
amp
.
CustomOpLists
()
amp_list
.
unsupported_list
=
{}
to_fp16_var_names
=
paddle
.
static
.
amp
.
cast_model_to_fp16
(
main_program
,
amp_list
,
use_fp16_guard
=
False
)
paddle
.
static
.
amp
.
cast_parameters_to_fp16
(
paddle
.
CPUPlace
(),
main_program
,
to_fp16_var_names
=
to_fp16_var_names
)
class
IPUOpTest
(
IPUTest
):
@
classmethod
def
setUpClass
(
cls
):
super
().
setUpClass
()
# Items that a op_tester needs
cls
.
main_prog
:
paddle
.
static
.
Program
=
None
cls
.
startup_prog
:
paddle
.
static
.
Program
=
None
cls
.
scope
:
paddle
.
static
.
Scope
=
None
cls
.
feed_list
:
List
[
str
]
=
None
cls
.
fetch_list
:
List
[
str
]
=
None
cls
.
output_dict
:
Optional
[
Dict
]
=
{}
@
property
def
fp16_enabled
(
self
):
return
True
def
skip_mode
(
self
,
exec_mode
):
if
exec_mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
return
True
else
:
return
False
def
is_ipu_mode
(
self
,
exec_mode
):
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
return
False
return
True
def
is_fp16_mode
(
self
,
exec_mode
):
if
exec_mode
!=
ExecutionMode
.
IPU_FP16
:
return
False
return
True
def
set_atol
(
self
):
self
.
atol
=
1e-10
self
.
rtol
=
1e-6
...
...
@@ -102,55 +158,90 @@ class IPUOpTest(unittest.TestCase):
self
.
is_training
=
False
self
.
epoch
=
1
def
check
(
self
,
outputs
,
check_shape
=
False
):
cpu_fp32
=
outputs
[
ExecutionMode
.
CPU_FP32
]
ipu_fp32
=
outputs
[
ExecutionMode
.
IPU_FP32
]
max_diff
=
np
.
abs
(
cpu_fp32
-
ipu_fp32
).
max
()
fp32_flag
=
np
.
allclose
(
cpu_fp32
,
ipu_fp32
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
self
.
assertTrue
(
fp32_flag
,
"max diff is %f"
%
(
max_diff
))
def
run_op_test
(
self
,
exec_mode
,
ipu_strategy
=
None
):
# NOTE: some op has no inputs
# if len(self.feed_list) == 0 or len(self.fetch_list) == 0:
# raise ValueError('feed_list or fetch_list is empty')
if
self
.
is_ipu_mode
(
exec_mode
):
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
self
.
startup_prog
)
if
self
.
is_ipu_mode
(
exec_mode
):
if
ipu_strategy
is
None
:
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
self
.
is_fp16_mode
(
exec_mode
):
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
IPUOpTest
.
cast_model_to_fp16
(
self
.
main_prog
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
self
.
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
self
.
feed_list
,
self
.
fetch_list
)
else
:
program
=
self
.
main_prog
feed
=
self
.
feed_fp32
if
self
.
is_fp16_mode
(
exec_mode
):
feed
=
self
.
feed_fp16
if
self
.
is_training
:
result
=
[]
for
_
in
range
(
self
.
epoch
):
loss_res
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
self
.
fetch_list
)
result
.
append
(
loss_res
)
else
:
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
self
.
fetch_list
)
if
isinstance
(
result
,
list
)
and
len
(
result
)
==
1
:
self
.
output_dict
[
exec_mode
]
=
result
[
0
]
else
:
self
.
output_dict
[
exec_mode
]
=
result
def
check
(
self
,
check_shape
=
False
,
output_dict
=
None
):
if
output_dict
is
None
:
output_dict
=
self
.
output_dict
if
len
(
output_dict
)
==
0
:
raise
ValueError
(
"output_dict is empty"
)
cpu_fp32
=
output_dict
[
ExecutionMode
.
CPU_FP32
]
ipu_fp32
=
output_dict
[
ExecutionMode
.
IPU_FP32
]
cpu_fp32
=
np
.
asarray
(
cpu_fp32
).
astype
(
np
.
float32
).
flatten
()
ipu_fp32
=
np
.
asarray
(
ipu_fp32
).
astype
(
np
.
float32
).
flatten
()
pass_check
=
np
.
allclose
(
ipu_fp32
,
cpu_fp32
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
)
if
not
pass_check
:
max_atol
=
np
.
abs
(
ipu_fp32
-
cpu_fp32
).
max
()
cpu_fp32_abs
=
np
.
abs
(
cpu_fp32
)
cpu_fp32_abs
[
cpu_fp32_abs
==
0.0
]
=
1e-20
max_rtol
=
(
np
.
abs
(
ipu_fp32
-
cpu_fp32
)
/
cpu_fp32_abs
).
max
()
raise
AssertionError
(
f
"ipu_fp32 check failed. max_atol is
{
max_atol
}
, max_rtol is
{
max_rtol
}
"
)
if
check_shape
:
self
.
assertTrue
(
cpu_fp32
.
shape
==
ipu_fp32
.
shape
)
ipu_popart_fp16
=
None
if
ExecutionMode
.
IPU_POPART_FP16
in
outputs
.
keys
():
ipu_popart_fp16
=
outputs
[
ExecutionMode
.
IPU_POPART_FP16
]
max_diff
=
np
.
abs
(
ipu_popart_fp16
.
astype
(
np
.
float32
)
-
cpu_fp32
).
max
()
fp16_flag
=
np
.
allclose
(
ipu_popart_fp16
.
astype
(
np
.
float32
),
cpu_fp32
,
rtol
=
self
.
rtol_fp16
,
atol
=
self
.
atol_fp16
)
self
.
assertTrue
(
fp16_flag
,
"max diff is %f"
%
(
max_diff
))
if
ExecutionMode
.
IPU_FP16
in
output_dict
.
keys
():
ipu_fp16
=
output_dict
[
ExecutionMode
.
IPU_FP16
]
ipu_fp16
=
np
.
asarray
(
ipu_fp16
).
astype
(
np
.
float32
).
flatten
()
pass_check
=
np
.
allclose
(
ipu_fp16
,
cpu_fp32
,
rtol
=
self
.
rtol_fp16
,
atol
=
self
.
atol_fp16
)
if
not
pass_check
:
max_atol
=
np
.
abs
(
ipu_fp16
-
cpu_fp32
).
max
()
cpu_fp32_abs
=
np
.
abs
(
cpu_fp32
)
cpu_fp32_abs
[
cpu_fp32_abs
==
0.0
]
=
1e-20
max_rtol
=
(
np
.
abs
(
ipu_fp16
-
cpu_fp32
)
/
cpu_fp32_abs
).
max
()
raise
AssertionError
(
f
"ipu_fp16 check failed. max_atol is
{
max_atol
}
, max_rtol is
{
max_rtol
}
"
)
if
check_shape
:
self
.
assertTrue
(
ipu_popart_fp16
.
shape
==
cpu_fp32
.
shape
)
ipu_mixed_precision
=
None
if
ExecutionModeFull
.
IPU_MIXED_PRECISION
in
outputs
.
keys
():
ipu_mixed_precision
=
outputs
[
ExecutionModeFull
.
IPU_MIXED_PRECISION
]
max_diff
=
np
.
abs
(
ipu_mixed_precision
.
astype
(
np
.
float32
)
-
cpu_fp32
).
max
()
fp16_flag
=
np
.
allclose
(
ipu_mixed_precision
.
astype
(
np
.
float32
),
cpu_fp32
,
rtol
=
self
.
rtol_fp16
,
atol
=
self
.
atol_fp16
)
self
.
assertTrue
(
fp16_flag
,
"max diff is %f"
%
(
max_diff
))
if
check_shape
:
self
.
assertTrue
(
ipu_mixed_precision
.
shape
==
cpu_fp32
.
shape
)
if
ExecutionMode
.
IPU_POPART_FP16
in
outputs
.
keys
(
)
and
ExecutionModeFull
.
IPU_MIXED_PRECISION
in
outputs
.
keys
():
max_diff
=
np
.
abs
(
ipu_popart_fp16
-
ipu_mixed_precision
).
max
()
self
.
assertEqual
(
ipu_popart_fp16
.
all
(),
ipu_mixed_precision
.
all
(),
"max diff is %f"
%
(
max_diff
))
if
check_shape
:
self
.
assertTrue
(
ipu_popart_fp16
.
shape
==
ipu_mixed_precision
.
shape
)
self
.
assertTrue
(
ipu_fp16
.
shape
==
cpu_fp32
.
shape
)
# Execution Mode
class
ExecutionMode
(
IntEnum
):
CPU_FP32
=
ExecutionModeFull
.
CPU_FP32
IPU_FP32
=
ExecutionModeFull
.
IPU_FP32
IPU_FP16
=
ExecutionModeFull
.
IPU_FP16
python/paddle/fluid/tests/unittests/ipu/test_activation_x_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -18,8 +18,7 @@ import numpy as np
import
paddle
import
paddle.nn.functional
as
F
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
ExecutionMode
,
IPUOpTest
)
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -32,10 +31,6 @@ class TestRelu(IPUOpTest):
self
.
set_data_feed
()
self
.
set_feed_attr
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_test_op
(
self
):
self
.
op
=
paddle
.
fluid
.
layers
.
relu
self
.
op_attrs
=
{}
...
...
@@ -49,60 +44,22 @@ class TestRelu(IPUOpTest):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
self
.
op
(
x
,
**
self
.
op_attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
self
.
op
(
x
,
**
self
.
op_attrs
)
self
.
fetch_list
=
[
out
.
name
]
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestTanh
(
TestRelu
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_arg_max_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,8 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
ExecutionMode
,
IPUOpTest
)
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -31,12 +30,8 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
10
,
1000
]
)
data
=
np
.
random
.
uniform
(
size
=
[
10
,
500
]).
astype
(
np
.
float16
)
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
"in_0"
:
data
.
astype
(
np
.
float16
)}
...
...
@@ -48,64 +43,24 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"axis"
:
-
1
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
argmax
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
].
astype
(
np
.
int32
)
def
test_base
(
self
):
output_dict_fp32
=
{}
output_dict_fp16
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
if
mode
>
ExecutionMode
.
IPU_FP32
:
output_dict_fp16
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
else
:
output_dict_fp32
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict_fp32
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
argmax
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
for
k
,
v
in
self
.
output_dict
.
items
():
self
.
output_dict
[
k
]
=
v
.
astype
(
np
.
int32
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_assign_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -29,10 +29,6 @@ class TestBase(IPUOpTest):
self
.
set_data_feed
()
self
.
set_feed_attr
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
3
,
1
])
self
.
feed_fp32
=
{
'in_0'
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -42,60 +38,23 @@ class TestBase(IPUOpTest):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
assign
=
paddle
.
assign
(
x
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
assign
,
assign
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
assign
(
x
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
x
)
self
.
fetch_list
=
[
out
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestAssignFp32Value
(
TestBase
):
...
...
@@ -107,51 +66,13 @@ class TestAssignFp32Value(TestBase):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
3
,
1
])
self
.
assign_fp32
=
data
.
astype
(
np
.
float32
)
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
assign
=
paddle
.
assign
(
self
.
assign_fp32
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
assign
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
assign
=
paddle
.
assign
(
self
.
assign_fp32
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
assign
)
self
.
fetch_list
=
[
out
.
name
]
class
TestAssignBoolValue
(
TestBase
):
...
...
@@ -162,52 +83,15 @@ class TestAssignBoolValue(TestBase):
data
=
np
.
random
.
choice
([
True
,
False
],
size
=
(
2
,
3
,
1
))
self
.
assign_bool
=
data
.
astype
(
np
.
bool
)
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
less_than
(
x
,
x
)
assign
=
paddle
.
assign
(
self
.
assign_bool
)
out
=
paddle
.
logical_and
(
x
,
assign
)
out
=
paddle
.
cast
(
out
,
'float32'
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
less_than
(
x
,
x
)
assign
=
paddle
.
assign
(
self
.
assign_bool
)
x
=
paddle
.
logical_and
(
x
,
assign
)
out
=
paddle
.
cast
(
x
,
'float32'
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_avg_shard_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -29,10 +29,6 @@ class TestBase(IPUOpTest):
self
.
set_data_feed
()
self
.
set_feed_attr
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_atol
(
self
):
self
.
atol
=
2e-6
self
.
rtol
=
1e-5
...
...
@@ -48,67 +44,32 @@ class TestBase(IPUOpTest):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
fetch_list
=
[
x
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
ipu_strategy
.
set_options
({
'need_avg_shard'
:
True
})
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
self
.
fetch_list
=
[
x
.
name
]
def
run_model
(
self
,
exec_mode
):
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
ipu_strategy
.
set_options
({
'need_avg_shard'
:
True
})
self
.
run_op_test
(
exec_mode
,
ipu_strategy
)
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_batch_norm_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,8 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
ExecutionMode
,
IPUOpTest
)
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -31,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_atol
(
self
):
self
.
atol
=
1e-6
self
.
rtol
=
1e-5
...
...
@@ -56,61 +51,24 @@ class TestBase(IPUOpTest):
self
.
attrs
[
'data_layout'
]
=
'NCHW'
self
.
attrs
[
'in_place'
]
=
False
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
out
=
paddle
.
fluid
.
layers
.
batch_norm
(
conv1
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
x
=
paddle
.
fluid
.
layers
.
batch_norm
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
x
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_batchs_per_step_simple_ipu.py
已删除
100644 → 0
浏览文件 @
1b5647d7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
paddle
import
paddle.static
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestFunc
(
unittest
.
TestCase
):
def
_test_func
(
self
,
run_ipu
=
True
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
bps
=
5
n
=
1
if
run_ipu
else
-
1
c
,
h
,
w
=
3
,
10
,
10
np_image
=
np
.
random
.
uniform
(
size
=
[
1
*
bps
,
c
,
h
,
w
]).
astype
(
np
.
float32
)
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
image
=
paddle
.
static
.
data
(
name
=
'image'
,
shape
=
[
n
,
c
,
h
,
w
],
dtype
=
'float32'
)
conv2d
=
paddle
.
static
.
nn
.
conv2d
(
image
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
out
=
conv2d
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
[
image
.
name
]
fetch_list
=
[
out
.
name
]
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
False
)
ipu_strategy
.
set_pipelining_config
(
batches_per_step
=
bps
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
{
image
.
name
:
np_image
},
fetch_list
=
[
out
])
return
result
[
0
]
def
test_func
(
self
):
ipu_res
=
self
.
_test_func
(
True
)
cpu_res
=
self
.
_test_func
(
False
)
if
np
.
prod
(
ipu_res
.
shape
)
==
np
.
prod
(
cpu_res
.
shape
):
ipu_res
=
ipu_res
.
reshape
(
cpu_res
.
shape
)
self
.
assertTrue
(
np
.
allclose
(
ipu_res
,
cpu_res
,
atol
=
1e-4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_cast_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -30,175 +30,81 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
def
set_atol
(
self
):
self
.
atol
=
1e-3
@
property
def
fp16_enabled
(
self
):
return
False
def
set_data_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float32'
),
}
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
])
self
.
feed_fp32
=
{
'x'
:
data
.
astype
(
np
.
float32
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed
.
values
()]
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
_fp32
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed
_fp32
.
values
()]
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
self
.
attrs
[
'dtype'
]
=
'float16'
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
cast
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
res0
=
self
.
_test_base
(
True
)
res1
=
self
.
_test_base
(
False
)
self
.
assertTrue
(
np
.
allclose
(
res0
.
flatten
(),
res1
.
flatten
(),
atol
=
self
.
atol
))
self
.
assertTrue
(
res0
.
shape
==
res1
.
shape
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
cast
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestEnableFp16
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
@
property
def
fp16_enabled
(
self
):
return
True
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
set_data_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
array
([
1
,
200
,
3000
,
40000
]).
astype
(
'int32'
),
}
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
])
self
.
feed_fp32
=
{
'x'
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
'x'
:
data
.
astype
(
np
.
float16
)}
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
self
.
attrs
[
'dtype'
]
=
'float32'
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
cast
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
class
TestDisableTransferCast
(
TestEnableFp16
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
def
set_data_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
array
([
1
,
200
,
3000
,
40000
]).
astype
(
'int32'
),
}
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
])
self
.
feed_fp32
=
{
'x'
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
'x'
:
data
.
astype
(
np
.
float16
)}
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
self
.
attrs
[
'dtype'
]
=
'float32'
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
cast
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
ipu_strategy
.
set_options
({
"transfer_cast_op"
:
False
})
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
run_model
(
self
,
exec_mode
):
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
ipu_strategy
.
set_options
({
"transfer_cast_op"
:
False
})
self
.
run_op_test
(
exec_mode
)
class
TestCase2
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float16'
),
}
...
...
@@ -208,11 +114,8 @@ class TestCase2(TestBase):
class
TestCase3
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float32'
),
}
...
...
@@ -222,11 +125,8 @@ class TestCase3(TestBase):
class
TestCase4
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'int32'
),
}
...
...
@@ -236,11 +136,8 @@ class TestCase4(TestBase):
class
TestCase5
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float16'
),
}
...
...
@@ -250,11 +147,8 @@ class TestCase5(TestBase):
class
TestCase6
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-10
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'int32'
),
}
...
...
@@ -273,7 +167,7 @@ class TestCase2(TestBase):
@
unittest
.
skip
(
'skip float16 to float32'
)
class
TestCase3
(
TestBase
):
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'float16'
),
}
...
...
@@ -285,10 +179,11 @@ class TestCase3(TestBase):
@
unittest
.
skip
(
'int32 to int8 is not supported'
)
class
TestCase4
(
TestBase
):
def
set_atol
(
self
):
super
().
set_atol
()
self
.
atol
=
1
def
set_data_feed
(
self
):
self
.
feed
=
{
self
.
feed
_fp32
=
{
"x"
:
np
.
random
.
randint
(
low
=
1
,
high
=
100
,
size
=
[
1
,
3
,
3
,
3
]).
astype
(
'int32'
),
}
...
...
python/paddle/fluid/tests/unittests/ipu/test_concat_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,8 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
ExecutionMode
,
IPUOpTest
)
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -31,14 +30,9 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data1
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
data2
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
'x'
:
data1
.
astype
(
np
.
float32
),
'y'
:
data2
.
astype
(
np
.
float32
)
...
...
@@ -55,63 +49,24 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"axis"
:
0
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
concat
([
x
,
y
],
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
concat
([
x
,
y
],
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_conv_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -26,26 +26,19 @@ class TestBase(IPUOpTest):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_data_feed
()
self
.
set_feed_attr
()
self
.
set_feed
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_atol
(
self
):
self
.
atol
=
1e-6
self
.
rtol
=
1e-6
self
.
atol_fp16
=
1e-3
self
.
rtol_fp16
=
1e-3
def
set_
data_
feed
(
self
):
def
set_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
'in_0'
:
data
.
astype
(
np
.
float32
)}
self
.
feed_fp16
=
{
'in_0'
:
data
.
astype
(
np
.
float16
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
...
...
@@ -59,59 +52,22 @@ class TestBase(IPUOpTest):
self
.
attrs
[
'groups'
]
=
1
self
.
attrs
[
'data_format'
]
=
'NCHW'
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
image
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
conv2d
(
image
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
fluid
.
layers
.
conv2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
x
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_cross_entropy2_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
x
=
np
.
random
.
uniform
(
size
=
[
3
,
7
])
label
=
np
.
arange
(
3
).
reshape
([
3
,
1
])
...
...
@@ -53,81 +49,31 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
'soft_label'
:
False
,
}
def
np_nll_loss
(
self
):
tmp
=
-
np
.
log
(
self
.
feed_fp32
[
'x'
])
label
=
self
.
feed_fp32
[
'label'
]
indice
=
[
range
(
label
.
shape
[
0
]),
label
.
flatten
()]
self
.
np_ref
=
tmp
[
indice
]
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
label
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'int32'
)
else
:
label
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'int64'
)
out
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
x
,
label
=
label
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed
[
'label'
]
=
feed
[
'label'
].
astype
(
np
.
int32
)
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
,
on_ipu
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
if
on_ipu
:
label
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'int32'
)
else
:
label
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'int64'
)
out
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
x
,
label
=
label
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
if
self
.
is_ipu_mode
(
exec_mode
):
self
.
feed_fp32
[
'label'
]
=
self
.
feed_fp32
[
'label'
].
astype
(
np
.
int32
)
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
np_nll_loss
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
(
self
.
is_ipu_mode
(
m
))
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -142,7 +88,6 @@ class TestCase2(TestBase):
def
set_data_feed
(
self
):
x
=
np
.
random
.
uniform
(
size
=
[
30
,
70
])
label
=
np
.
arange
(
30
).
reshape
([
30
,
1
])
self
.
feed_fp32
=
{
"x"
:
x
.
astype
(
np
.
float32
),
"label"
:
label
.
astype
(
np
.
int64
)
...
...
python/paddle/fluid/tests/unittests/ipu/test_cumsum_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -48,60 +48,22 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
out
=
paddle
.
fluid
.
layers
.
cumsum
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
out
=
paddle
.
fluid
.
layers
.
cumsum
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_dropout_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,8 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
ExecutionMode
,
IPUOpTest
)
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -31,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
])
self
.
feed_fp32
=
{
'x'
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -51,60 +46,23 @@ class TestBase(IPUOpTest):
"dropout_implementation"
:
"downgrade_in_infer"
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
dropout
=
paddle
.
fluid
.
layers
.
dropout
(
x
,
**
self
.
attrs
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
dropout
,
dropout
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x
=
paddle
.
fluid
.
layers
.
dropout
(
x
,
**
self
.
attrs
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
x
)
self
.
fetch_list
=
[
out
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_elemetwise_x_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,8 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
ExecutionMode
,
IPUOpTest
)
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -43,63 +42,24 @@ class TestMul(IPUOpTest):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_fp32
.
keys
())
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
self
.
op
(
x
,
y
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
self
.
op
(
x
,
y
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
run_test_base
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
def
test_case0
(
self
):
data_x
=
np
.
random
.
uniform
(
size
=
(
2
,
3
,
4
,
5
))
...
...
python/paddle/fluid/tests/unittests/ipu/test_equal_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
x
=
np
.
ones
([
1
,
10
])
y
=
np
.
zeros
([
1
,
10
])
...
...
@@ -53,63 +49,24 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
equal
(
x
,
y
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
1
],
shape
=
self
.
feed_shape
[
1
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
equal
(
x
,
y
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
().
astype
(
np
.
int32
)
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_expand_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
3
,
1
])
self
.
feed_fp32
=
{
'in_0'
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -47,59 +43,22 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"expand_times"
:
[
1
,
2
,
2
]}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
out
=
paddle
.
fluid
.
layers
.
expand
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
out
=
paddle
.
fluid
.
layers
.
expand
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
self
.
check
(
output_dict
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
@@ -116,53 +75,15 @@ class TestCase1(TestBase):
def
set_op_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
expand_times
=
paddle
.
fluid
.
layers
.
fill_constant
(
shape
=
[
len
(
self
.
feed_shape
[
0
])],
dtype
=
"int32"
,
value
=
2
)
out
=
paddle
.
fluid
.
layers
.
expand
(
x
,
expand_times
=
expand_times
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
"float32"
)
expand_times
=
paddle
.
fluid
.
layers
.
fill_constant
(
shape
=
[
len
(
self
.
feed_shape
[
0
])],
dtype
=
"int32"
,
value
=
2
)
out
=
paddle
.
fluid
.
layers
.
expand
(
x
,
expand_times
=
expand_times
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/ipu/test_fill_any_like_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
3
,
1
])
self
.
feed_fp32
=
{
'in_0'
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -46,60 +42,23 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
'fill_value'
:
0.3
,
'dtype'
:
'float32'
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x_fill
=
paddle
.
full_like
(
x
,
**
self
.
attrs
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x_fill
,
x_fill
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
x_fill
=
paddle
.
full_like
(
x
,
**
self
.
attrs
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x_fill
,
x_fill
)
self
.
fetch_list
=
[
out
.
name
]
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_fill_constant_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,17 +30,14 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
self
.
feed
=
{}
self
.
feed_fp32
=
{}
self
.
feed_fp16
=
{}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed
.
values
()]
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
_fp32
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
_fp32
.
keys
())
self
.
feed_dtype
=
[
x
.
dtype
for
x
in
self
.
feed
_fp32
.
values
()]
def
set_op_attrs
(
self
):
self
.
attrs
=
{
...
...
@@ -50,50 +47,21 @@ class TestBase(IPUOpTest):
'value'
:
0.3
,
}
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
fluid
.
layers
.
fill_constant
(
**
self
.
attrs
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
x
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
fluid
.
layers
.
fill_constant
(
**
self
.
attrs
)
out
=
paddle
.
fluid
.
layers
.
elementwise_add
(
x
,
x
)
self
.
fetch_list
=
[
out
.
name
]
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
).
flatten
()
self
.
check
(
output_dict
)
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_flatten_op_ipu.py
浏览文件 @
63d4d05a
...
...
@@ -17,7 +17,7 @@ import unittest
import
numpy
as
np
import
paddle
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
,
ExecutionMode
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
...
...
@@ -30,10 +30,6 @@ class TestBase(IPUOpTest):
self
.
set_feed_attr
()
self
.
set_op_attrs
()
@
property
def
fp16_enabled
(
self
):
return
True
def
set_data_feed
(
self
):
data
=
np
.
random
.
uniform
(
size
=
[
2
,
2
,
4
,
6
])
self
.
feed_fp32
=
{
"in_0"
:
data
.
astype
(
np
.
float32
)}
...
...
@@ -47,59 +43,22 @@ class TestBase(IPUOpTest):
self
.
attrs
=
{}
self
.
attrs
[
'axis'
]
=
1
def
_test_base
(
self
,
exec_mode
):
scope
=
paddle
.
static
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
with
paddle
.
static
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
flatten
(
x
=
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
exec_mode
==
ExecutionMode
.
CPU_FP32
:
place
=
paddle
.
CPUPlace
()
else
:
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
exec_mode
!=
ExecutionMode
.
CPU_FP32
:
feed_list
=
self
.
feed_list
ipu_strategy
=
paddle
.
static
.
IpuStrategy
()
ipu_strategy
.
set_graph_config
(
is_training
=
self
.
is_training
)
if
exec_mode
==
ExecutionMode
.
IPU_POPART_FP16
:
ipu_strategy
.
set_precision_config
(
enable_fp16
=
True
)
program
=
paddle
.
static
.
IpuCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
feed
=
self
.
feed_fp32
if
exec_mode
>
ExecutionMode
.
IPU_FP32
:
feed
=
self
.
feed_fp16
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
output_dict
=
{}
for
mode
in
ExecutionMode
:
if
mode
>
ExecutionMode
.
IPU_FP32
and
not
self
.
fp16_enabled
:
break
output_dict
[
mode
]
=
self
.
_test_base
(
mode
)
self
.
check
(
output_dict
,
check_shape
=
True
)
@
IPUOpTest
.
static_graph
def
build_model
(
self
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
flatten
(
x
=
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
self
.
run_op_test
(
exec_mode
)
def
test
(
self
):
for
m
in
IPUOpTest
.
ExecutionMode
:
if
not
self
.
skip_mode
(
m
):
self
.
build_model
()
self
.
run_model
(
m
)
self
.
check
()
class
TestCase1
(
TestBase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录