Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
638b69dc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
638b69dc
编写于
6月 20, 2022
作者:
X
xiongkun
提交者:
GitHub
6月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry pick] Einsum memory optimization PR #43397 (#43554)
* cherry pick from #43397 * fix code
上级
68d5c12b
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
70 addition
and
24 deletion
+70
-24
paddle/fluid/eager/nan_inf_utils.cc
paddle/fluid/eager/nan_inf_utils.cc
+1
-0
paddle/fluid/eager/nan_inf_utils.h
paddle/fluid/eager/nan_inf_utils.h
+2
-1
paddle/fluid/operators/einsum_op.cc
paddle/fluid/operators/einsum_op.cc
+15
-4
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+8
-1
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+2
-1
paddle/phi/kernels/einsum_kernel.h
paddle/phi/kernels/einsum_kernel.h
+2
-1
paddle/phi/kernels/impl/einsum_grad_impl.h
paddle/phi/kernels/impl/einsum_grad_impl.h
+0
-1
paddle/phi/kernels/impl/einsum_impl.h
paddle/phi/kernels/impl/einsum_impl.h
+9
-3
paddle/phi/ops/compat/einsum_sig.cc
paddle/phi/ops/compat/einsum_sig.cc
+1
-1
python/paddle/fluid/tests/unittests/test_einsum_op.py
python/paddle/fluid/tests/unittests/test_einsum_op.py
+4
-3
python/paddle/tensor/einsum.py
python/paddle/tensor/einsum.py
+9
-3
python/paddle/utils/code_gen/api.yaml
python/paddle/utils/code_gen/api.yaml
+1
-1
python/paddle/utils/code_gen/backward.yaml
python/paddle/utils/code_gen/backward.yaml
+16
-4
未找到文件。
paddle/fluid/eager/nan_inf_utils.cc
浏览文件 @
638b69dc
...
...
@@ -114,6 +114,7 @@ void CheckTensorHasNanOrInf(const std::string& api_name,
const
TupleOfTensorAndVector
&
tensors
)
{
CheckTensorHasNanOrInf
(
api_name
,
std
::
get
<
0
>
(
tensors
));
CheckTensorHasNanOrInf
(
api_name
,
std
::
get
<
1
>
(
tensors
));
CheckTensorHasNanOrInf
(
api_name
,
std
::
get
<
2
>
(
tensors
));
}
}
// namespace egr
paddle/fluid/eager/nan_inf_utils.h
浏览文件 @
638b69dc
...
...
@@ -31,7 +31,8 @@ using TupleOfFourTensors = std::tuple<Tensor, Tensor, Tensor, Tensor>;
using
TupleOfFiveTensors
=
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
;
using
TupleOfSixTensors
=
std
::
tuple
<
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
,
Tensor
>
;
using
TupleOfTensorAndVector
=
std
::
tuple
<
Tensor
,
std
::
vector
<
Tensor
>>
;
using
TupleOfTensorAndVector
=
std
::
tuple
<
Tensor
,
std
::
vector
<
Tensor
>
,
std
::
vector
<
Tensor
>>
;
void
CheckTensorHasNanOrInf
(
const
std
::
string
&
api_name
,
const
Tensor
&
tensor
);
...
...
paddle/fluid/operators/einsum_op.cc
浏览文件 @
638b69dc
...
...
@@ -40,6 +40,10 @@ class EinsumOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsExtra
()
.
AsIntermediate
();
AddOutput
(
"XShape"
,
"(Tensor), The cache of the x_shape of: A and B."
)
.
AsDuplicable
()
.
AsExtra
()
.
AsIntermediate
();
AddAttr
<
std
::
string
>
(
"equation"
,
"(string) A einsum equation. such as `ij,jk->ik`"
"There must have `->` and the number of operands in "
...
...
@@ -58,8 +62,8 @@ class EinsumGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
x_name
=
"Operands"
;
auto
x_grad_name
=
framework
::
GradVarName
(
x_name
);
ctx
->
SetOutputsDim
(
x_grad_name
,
ctx
->
GetInputsDim
(
x_name
));
ctx
->
ShareAllLoD
(
x_name
,
x_grad_name
);
ctx
->
SetOutputsDim
(
x_grad_name
,
ctx
->
GetInputsDim
(
"Operands"
));
ctx
->
ShareAllLoD
(
"Operands"
,
x_grad_name
);
}
protected:
...
...
@@ -78,8 +82,15 @@ class EinsumGradMaker : public framework::SingleGradOpMaker<T> {
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"einsum_grad"
);
retv
->
SetInput
(
"Operands"
,
this
->
Input
(
"Operands"
));
retv
->
SetInput
(
"InnerCache"
,
this
->
Output
(
"InnerCache"
));
if
(
this
->
HasOutput
(
"InnerCache"
))
{
retv
->
SetInput
(
"InnerCache"
,
this
->
Output
(
"InnerCache"
));
}
if
(
this
->
HasOutput
(
"XShape"
))
{
// add if for compatibility.
retv
->
SetInput
(
"Operands"
,
this
->
Output
(
"XShape"
));
// for memory save.
}
else
{
retv
->
SetInput
(
"Operands"
,
this
->
Input
(
"Operands"
));
}
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
retv
->
SetAttrMap
(
this
->
Attrs
());
retv
->
SetOutput
(
framework
::
GradVarName
(
"Operands"
),
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
638b69dc
...
...
@@ -402,7 +402,8 @@ void EighInferMeta(const MetaTensor& x,
void
EinsumInferMeta
(
const
std
::
vector
<
const
MetaTensor
*>&
inputs
,
const
std
::
string
&
equation
,
MetaTensor
*
out
,
std
::
vector
<
MetaTensor
*>
inner_cache
)
{
std
::
vector
<
MetaTensor
*>
inner_cache
,
std
::
vector
<
MetaTensor
*>
xshape
)
{
// collect the following informations to prepare einsum.
LabelMap
labelshape
(
0
);
LabelMap
labeltype
(
LabelType
::
Reduction
);
...
...
@@ -439,6 +440,12 @@ void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
VLOG
(
3
)
<<
"Label Shape is : "
<<
label_to_string
(
all_labels
,
labelshape
);
out
->
set_dims
(
make_ddim
(
output_dims
));
out
->
set_dtype
(
inputs
[
0
]
->
dtype
());
for
(
size_t
i
=
0
;
i
<
xshape
.
size
();
++
i
)
{
if
(
xshape
[
i
]
!=
nullptr
)
{
xshape
[
i
]
->
set_dims
(
inputs
[
i
]
->
dims
());
xshape
[
i
]
->
set_dtype
(
inputs
[
i
]
->
dtype
());
}
}
}
void
ExpandInferMeta
(
const
MetaTensor
&
x
,
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
638b69dc
...
...
@@ -83,7 +83,8 @@ void EighInferMeta(const MetaTensor& x,
void
EinsumInferMeta
(
const
std
::
vector
<
const
MetaTensor
*>&
inputs
,
const
std
::
string
&
equation
,
MetaTensor
*
out
,
std
::
vector
<
MetaTensor
*>
inner_cache
);
std
::
vector
<
MetaTensor
*>
inner_cache
,
std
::
vector
<
MetaTensor
*>
xshape
);
void
ExpandInferMeta
(
const
MetaTensor
&
x
,
const
IntArray
&
shape
,
...
...
paddle/phi/kernels/einsum_kernel.h
浏览文件 @
638b69dc
...
...
@@ -29,6 +29,7 @@ void EinsumKernelRaw(const Context& dev_ctx,
const
std
::
vector
<
const
DenseTensor
*>&
inputs
,
const
std
::
string
&
equation
,
DenseTensor
*
out
,
std
::
vector
<
DenseTensor
*>
cache
);
std
::
vector
<
DenseTensor
*>
inner_cache
,
std
::
vector
<
DenseTensor
*>
xshape
);
}
// namespace phi
paddle/phi/kernels/impl/einsum_grad_impl.h
浏览文件 @
638b69dc
...
...
@@ -177,7 +177,6 @@ void EinsumGradKernel(const Context& dev_ctx,
cache
[
0
].
ShareBufferWith
(
*
(
inner_cache
[
0
]));
cache
[
1
].
ShareBufferWith
(
*
(
inner_cache
[
1
]));
}
EinsumKernelImpl
<
T
,
Context
>
(
dev_ctx
,
all_labels
,
operands_for_A
,
...
...
paddle/phi/kernels/impl/einsum_impl.h
浏览文件 @
638b69dc
...
...
@@ -458,7 +458,7 @@ DenseTensor PerformContraction(
}
// reduction
DenseTensor
trans_t
;
if
(
FLAGS_einsum_opt
&&
use_cache
&&
cache
[
operand_idx
]
!=
nullptr
&&
if
(
use_cache
&&
cache
[
operand_idx
]
!=
nullptr
&&
cache
[
operand_idx
]
->
IsInitialized
())
{
trans_t
.
ShareBufferWith
(
*
(
cache
[
operand_idx
]));
VLOG
(
5
)
<<
"Cache Used!"
;
...
...
@@ -467,7 +467,7 @@ DenseTensor PerformContraction(
dev_ctx
,
t
,
perm
,
all_labels
,
ellipsis
,
label2type
);
trans_t
=
PerformTranspose
<
T
,
Context
>
(
dev_ctx
,
reduct_t
,
perm
,
reordered_all_labels
,
ellipsis
,
label2type
);
if
(
FLAGS_einsum_opt
&&
cache
[
operand_idx
]
!=
nullptr
)
if
(
cache
[
operand_idx
]
!=
nullptr
)
cache
[
operand_idx
]
->
ShareBufferWith
(
trans_t
);
}
auto
mul_dims
=
GetShapeByType
<
int
>
(
all_labels
,
...
...
@@ -598,6 +598,11 @@ void EinsumKernelImpl(const Context& dev_ctx,
out
);
// Reshape Procedure
}
else
if
(
inputs
.
size
()
==
1
)
{
if
(
cache
[
0
]
!=
nullptr
)
{
// For compatibility, may be cache is nullptr if
// loading the program from v2.3.0
(
*
cache
[
0
])
=
*
(
inputs
[
0
]);
// ShareBuffer for backward, because backward
// we can only see cached tensor.
}
auto
reduce_A
=
PerformReduction
<
T
,
Context
>
(
dev_ctx
,
*
inputs
[
0
],
label2perms
[
0
],
...
...
@@ -626,7 +631,8 @@ void EinsumKernelRaw(const Context& dev_ctx,
const
std
::
vector
<
const
DenseTensor
*>&
inputs
,
const
std
::
string
&
equation
,
DenseTensor
*
out
,
std
::
vector
<
DenseTensor
*>
cache
)
{
std
::
vector
<
DenseTensor
*>
cache
,
std
::
vector
<
DenseTensor
*>
xshape
)
{
std
::
vector
<
char
>
tmp
;
// for the sake of compatibility, we may load and run v2.3 EinsumOp. Output
// may have nullptr and the cache.size() is not equal to inputs.size(). refer
...
...
paddle/phi/ops/compat/einsum_sig.cc
浏览文件 @
638b69dc
...
...
@@ -18,7 +18,7 @@ namespace phi {
KernelSignature
EinsumOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"einsum"
,
{
"Operands"
},
{
"equation"
},
{
"Out"
,
"InnerCache"
});
"einsum"
,
{
"Operands"
},
{
"equation"
},
{
"Out"
,
"InnerCache"
,
"XShape"
});
}
KernelSignature
EinsumGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
...
...
python/paddle/fluid/tests/unittests/test_einsum_op.py
浏览文件 @
638b69dc
...
...
@@ -37,7 +37,9 @@ class TestEinsumBinary(OpTest):
self
.
outputs
=
{
'Out'
:
out
,
"InnerCache"
:
[(
'cache_'
+
str
(
i
),
np
.
array
([
1.0
]))
for
i
in
range
(
len
(
self
.
operands
))]
for
i
in
range
(
len
(
self
.
operands
))],
"XShape"
:
[(
'xshape_'
+
str
(
i
),
np
.
array
([
1.0
]))
for
i
in
range
(
len
(
self
.
operands
))],
}
def
init_input
(
self
):
...
...
@@ -46,14 +48,13 @@ class TestEinsumBinary(OpTest):
self
.
inputs
.
append
(
np
.
random
.
random
(
s
).
astype
(
t
))
def
set_mandatory
(
self
):
self
.
disable
=
False
self
.
shapes
=
[(
10
,
10
,
20
),
(
20
,
6
)]
self
.
types
=
[
np
.
float64
,
np
.
float64
]
self
.
equation
=
"mij,jk->ki"
def
test_check_output
(
self
):
if
not
self
.
disable
:
self
.
check_output
(
no_check_set
=
[
"InnerCache"
])
self
.
check_output
(
no_check_set
=
[
"InnerCache"
,
"XShape"
])
def
test_grad
(
self
):
if
not
self
.
disable
:
...
...
python/paddle/tensor/einsum.py
浏览文件 @
638b69dc
...
...
@@ -802,9 +802,10 @@ def gen_einsum_op(equation, *operands):
if
_in_legacy_dygraph
():
# dygraph
return
_C_ops
.
einsum
(
operands
,
len
(
operands
),
'equation'
,
equation
)[
0
]
return
_C_ops
.
einsum
(
operands
,
len
(
operands
),
len
(
operands
),
'equation'
,
equation
)[
0
]
# static graph
for
inp
in
operands
:
check_variable_and_dtype
(
inp
,
'dtype'
,
[
'float32'
,
'float64'
],
'einsum'
)
check_type
(
equation
,
'equation'
,
str
,
'einsum'
)
...
...
@@ -816,11 +817,16 @@ def gen_einsum_op(equation, *operands):
helper
.
create_variable_for_type_inference
(
dtype
=
operands
[
0
].
dtype
)
for
i
in
range
(
len
(
operands
))
]
xshape
=
[
helper
.
create_variable_for_type_inference
(
dtype
=
operands
[
0
].
dtype
)
for
i
in
range
(
len
(
operands
))
]
helper
.
append_op
(
type
=
'einsum'
,
inputs
=
{
'Operands'
:
operands
},
outputs
=
{
'Out'
:
out
,
"InnerCache"
:
caches
},
"InnerCache"
:
caches
,
"XShape"
:
xshape
},
attrs
=
attrs
)
return
out
...
...
python/paddle/utils/code_gen/api.yaml
浏览文件 @
638b69dc
...
...
@@ -547,7 +547,7 @@
-
api
:
einsum
args
:
(Tensor[] x, str equation)
output
:
Tensor, Tensor[]{x.size()}
output
:
Tensor, Tensor[]{x.size()}
, Tensor[]{x.size()}
infer_meta
:
func
:
EinsumInferMeta
param
:
[
x
,
equation
]
...
...
python/paddle/utils/code_gen/backward.yaml
浏览文件 @
638b69dc
-
backward_api
:
abs_double_grad
forward
:
abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
args
:
(Tensor x, Tensor grad_x_grad)
output
:
Tensor(grad_out_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
abs_double_grad
data_transform
:
skip_transform
:
grad_x_grad
-
backward_api
:
abs_grad
forward
:
abs (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
...
...
@@ -447,12 +459,12 @@
skip_transform
:
out_w, out_w_grad
-
backward_api
:
einsum_grad
forward
:
einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache)
args
:
(Tensor[] x, Tensor[] inner_cache, Tensor out_grad, str equation)
output
:
Tensor[](x_grad){x.size()}
forward
:
einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache)
, Tensor[](x_shape)
args
:
(Tensor[] x
_shape
, Tensor[] inner_cache, Tensor out_grad, str equation)
output
:
Tensor[](x_grad){x
_shape
.size()}
infer_meta
:
func
:
UnchangedMultiInferMeta
param
:
[
x
]
param
:
[
x
_shape
]
kernel
:
func
:
einsum_grad
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录