未验证 提交 6364ebc4 编写于 作者: A Aurelius84 提交者: GitHub

Add distributions of Categorical and MultivariateNormal (#18263)

* add_distributions_of_normal_and_uniform

* paddle/fluid/API.spec

* modify API.spec

* modified paddle/fluid/API.spec, test=develop

* modify paddle/fluid/API.spec, test=develop

* modify paddle/fluid/API.spec, test=develop

* fix some comment, test=develop

* modify API.spec, test=develop

* Add distributions of Categorical and MultivariateNormal test=develop

* fix pylint codestyle test=develop

* fix conflict file test=develop

* edit API.spec test=develop

* improve sample code test=develop

* modify api.spec test=develop
上级 710767d8
...@@ -439,6 +439,18 @@ paddle.fluid.layers.Normal.entropy (ArgSpec(args=['self'], varargs=None, keyword ...@@ -439,6 +439,18 @@ paddle.fluid.layers.Normal.entropy (ArgSpec(args=['self'], varargs=None, keyword
paddle.fluid.layers.Normal.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', '2e8845cdf1129647e6fa6e816876cd3b')) paddle.fluid.layers.Normal.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', '2e8845cdf1129647e6fa6e816876cd3b'))
paddle.fluid.layers.Normal.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'b79091014ceaffb6a7372a198a341c23')) paddle.fluid.layers.Normal.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'b79091014ceaffb6a7372a198a341c23'))
paddle.fluid.layers.Normal.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', 'adac334af13f6984e991b3ecf12b8cb7')) paddle.fluid.layers.Normal.sample (ArgSpec(args=['self', 'shape', 'seed'], varargs=None, keywords=None, defaults=(0,)), ('document', 'adac334af13f6984e991b3ecf12b8cb7'))
paddle.fluid.layers.Categorical ('paddle.fluid.layers.distributions.Categorical', ('document', '865c9dac8af6190e05588486ba091ee8'))
paddle.fluid.layers.Categorical.__init__ (ArgSpec(args=['self', 'logits'], varargs=None, keywords=None, defaults=None), ('document', '933b96c9ebab8e2c1f6007a50287311e'))
paddle.fluid.layers.Categorical.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'b360a2a7a4da07c2d268b329e09c82c1'))
paddle.fluid.layers.Categorical.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', 'c2c4c37376584178025f0a4a61c4b862'))
paddle.fluid.layers.Categorical.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c0edd2e2fc76711477b32dc4da9de768'))
paddle.fluid.layers.Categorical.sample (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '08a2bbcaa20ee176ee7ec3d05737a0f6'))
paddle.fluid.layers.MultivariateNormalDiag ('paddle.fluid.layers.distributions.MultivariateNormalDiag', ('document', 'f6ee0e8b2898796dcff2a68c9fda19f0'))
paddle.fluid.layers.MultivariateNormalDiag.__init__ (ArgSpec(args=['self', 'loc', 'scale'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.MultivariateNormalDiag.entropy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3c679b573ba975c5067c8ebfd4354b02'))
paddle.fluid.layers.MultivariateNormalDiag.kl_divergence (ArgSpec(args=['self', 'other'], varargs=None, keywords=None, defaults=None), ('document', 'd9190d29dbd54c81f747a6436c35f062'))
paddle.fluid.layers.MultivariateNormalDiag.log_prob (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c0edd2e2fc76711477b32dc4da9de768'))
paddle.fluid.layers.MultivariateNormalDiag.sample (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '08a2bbcaa20ee176ee7ec3d05737a0f6'))
paddle.fluid.contrib.InitState ('paddle.fluid.contrib.decoder.beam_search_decoder.InitState', ('document', '3afd1f84232718e628e9e566941c5f05')) paddle.fluid.contrib.InitState ('paddle.fluid.contrib.decoder.beam_search_decoder.InitState', ('document', '3afd1f84232718e628e9e566941c5f05'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.StateCell ('paddle.fluid.contrib.decoder.beam_search_decoder.StateCell', ('document', 'ecd0066c02867d445d7b461e28220c50')) paddle.fluid.contrib.StateCell ('paddle.fluid.contrib.decoder.beam_search_decoder.StateCell', ('document', 'ecd0066c02867d445d7b461e28220c50'))
......
...@@ -22,7 +22,7 @@ import math ...@@ -22,7 +22,7 @@ import math
import numpy as np import numpy as np
import warnings import warnings
__all__ = ['Uniform', 'Normal'] __all__ = ['Uniform', 'Normal', 'Categorical', 'MultivariateNormalDiag']
class Distribution(object): class Distribution(object):
...@@ -396,3 +396,208 @@ class Normal(Distribution): ...@@ -396,3 +396,208 @@ class Normal(Distribution):
t1 = (self.loc - other.loc) / other.scale t1 = (self.loc - other.loc) / other.scale
t1 = (t1 * t1) t1 = (t1 * t1)
return 0.5 * (var_ratio + t1 - 1. - nn.log(var_ratio)) return 0.5 * (var_ratio + t1 - 1. - nn.log(var_ratio))
class Categorical(Distribution):
"""
Categorical distribution is a discrete probability distribution that
describes the possible results of a random variable that can take on
one of K possible categories, with the probability of each category
separately specified.
Args:
logits(list|numpy.ndarray|Variable): The logits input of categorical distribution.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
from paddle.fluid.layers import Categorical
a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
a_logits_tensor = layers.create_tensor(dtype="float32")
layers.assign(a_logits_npdata, a_logits_tensor)
b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
b_logits_tensor = layers.create_tensor(dtype="float32")
layers.assign(b_logits_npdata, b_logits_tensor)
a = Categorical(a_logits_tensor)
b = Categorical(b_logits_tensor)
a.entropy()
# [0.6931472] with shape: [1]
b.entropy()
# [0.6931347] with shape: [1]
a.kl_divergence(b)
# [1.2516975e-05] with shape: [1]
"""
def __init__(self, logits):
"""
Args:
logits: A float32 tensor
"""
if self._validate_args(logits):
self.logits = logits
else:
self.logits = self._to_variable(logits)[0]
def kl_divergence(self, other):
"""The KL-divergence between two Categorical distributions.
Args:
other (Categorical): instance of Categorical.
Returns:
Variable: kl-divergence between two Categorical distributions.
"""
assert isinstance(other, Categorical)
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
other_logits = other.logits - nn.reduce_max(
other.logits, dim=-1, keep_dim=True)
e_logits = ops.exp(logits)
other_e_logits = ops.exp(other_logits)
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
prob = e_logits / z
kl = nn.reduce_sum(
prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
dim=-1,
keep_dim=True)
return kl
def entropy(self):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of Categorical distribution.
"""
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
e_logits = ops.exp(logits)
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
prob = e_logits / z
entropy = -1.0 * nn.reduce_sum(
prob * (logits - nn.log(z)), dim=-1, keep_dim=True)
return entropy
class MultivariateNormalDiag(Distribution):
"""
A multivariate normal (also called Gaussian) distribution parameterized by a mean vector
and a covariance matrix.
Args:
loc(list|numpy.ndarray|Variable): The mean of multivariateNormal distribution.
scale(list|numpy.ndarray|Variable): The positive definite diagonal covariance matrix of
multivariateNormal distribution.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
from paddle.fluid.layers import MultivariateNormalDiag
a_loc_npdata = np.array([0.3,0.5],dtype="float32")
a_loc_tensor = layers.create_tensor(dtype="float32")
layers.assign(a_loc_npdata, a_loc_tensor)
a_scale_npdata = np.array([[0.4,0],[0,0.5]],dtype="float32")
a_scale_tensor = layers.create_tensor(dtype="float32")
layers.assign(a_scale_npdata, a_scale_tensor)
b_loc_npdata = np.array([0.2,0.4],dtype="float32")
b_loc_tensor = layers.create_tensor(dtype="float32")
layers.assign(b_loc_npdata, b_loc_tensor)
b_scale_npdata = np.array([[0.3,0],[0,0.4]],dtype="float32")
b_scale_tensor = layers.create_tensor(dtype="float32")
layers.assign(b_scale_npdata, b_scale_tensor)
a = MultivariateNormalDiag(a_loc_tensor, a_scale_tensor)
b = MultivariateNormalDiag(b_loc_tensor, b_scale_tensor)
a.entropy()
# [2.033158] with shape: [1]
b.entropy()
# [1.7777451] with shaoe: [1]
a.kl_divergence(b)
# [0.06542051] with shape: [1]
"""
def __init__(self, loc, scale):
if self._validate_args(loc, scale):
self.loc = loc
self.scale = scale
else:
self.loc, self.scale = self._to_variable(loc, scale)
def _det(self, value):
batch_shape = list(value.shape)
one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
one_diag = tensor.diag(
tensor.ones(
shape=[batch_shape[0]], dtype=self.loc.dtype))
det_diag = nn.reduce_prod(value + one_all - one_diag)
return det_diag
def _inv(self, value):
batch_shape = list(value.shape)
one_all = tensor.ones(shape=batch_shape, dtype=self.loc.dtype)
one_diag = tensor.diag(
tensor.ones(
shape=[batch_shape[0]], dtype=self.loc.dtype))
inv_diag = nn.elementwise_pow(value, (one_all - 2 * one_diag))
return inv_diag
def entropy(self):
"""Shannon entropy in nats.
Returns:
Variable: Shannon entropy of Multivariate Normal distribution.
"""
entropy = 0.5 * (
self.scale.shape[0] *
(1.0 + math.log(2 * math.pi)) + nn.log(self._det(self.scale)))
return entropy
def kl_divergence(self, other):
"""The KL-divergence between two Multivariate Normal distributions.
Args:
other (MultivariateNormalDiag): instance of Multivariate Normal.
Returns:
Variable: kl-divergence between two Multivariate Normal distributions.
"""
assert isinstance(other, MultivariateNormalDiag)
tr_cov_matmul = nn.reduce_sum(self._inv(other.scale) * self.scale)
loc_matmul_cov = nn.matmul((other.loc - self.loc),
self._inv(other.scale))
tri_matmul = nn.matmul(loc_matmul_cov, (other.loc - self.loc))
k = list(self.scale.shape)[0]
ln_cov = nn.log(self._det(other.scale)) - nn.log(self._det(self.scale))
kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)
return kl
...@@ -88,6 +88,68 @@ class NormalNumpy(DistributionNumpy): ...@@ -88,6 +88,68 @@ class NormalNumpy(DistributionNumpy):
return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio)) return 0.5 * (var_ratio + t1 - 1 - np.log(var_ratio))
class CategoricalNumpy(DistributionNumpy):
def __init__(self, logits):
self.logits = np.array(logits).astype('float32')
def entropy(self):
logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
e_logits = np.exp(logits)
z = np.sum(e_logits, axis=-1, keepdims=True)
prob = e_logits / z
return -1. * np.sum(prob * (logits - np.log(z)), axis=-1, keepdims=True)
def kl_divergence(self, other):
logits = self.logits - np.max(self.logits, axis=-1, keepdims=True)
other_logits = other.logits - np.max(
other.logits, axis=-1, keepdims=True)
e_logits = np.exp(logits)
other_e_logits = np.exp(other_logits)
z = np.sum(e_logits, axis=-1, keepdims=True)
other_z = np.sum(other_e_logits, axis=-1, keepdims=True)
prob = e_logits / z
return np.sum(prob * (logits - np.log(z) - other_logits \
+ np.log(other_z)), axis=-1, keepdims=True)
class MultivariateNormalDiagNumpy(DistributionNumpy):
def __init__(self, loc, scale):
self.loc = np.array(loc).astype('float32')
self.scale = np.array(scale).astype('float32')
def _det(self, value):
batch_shape = list(value.shape)
one_all = np.ones(shape=batch_shape, dtype='float32')
one_diag = np.eye(batch_shape[0], dtype='float32')
det_diag = np.prod(value + one_all - one_diag)
return det_diag
def _inv(self, value):
batch_shape = list(value.shape)
one_all = np.ones(shape=batch_shape, dtype='float32')
one_diag = np.eye(batch_shape[0], dtype='float32')
inv_diag = np.power(value, (one_all - 2 * one_diag))
return inv_diag
def entropy(self):
return 0.5 * (self.scale.shape[0] *
(1.0 + np.log(np.array(2 * math.pi).astype('float32'))
) + np.log(self._det(self.scale)))
def kl_divergence(self, other):
tr_cov_matmul = np.sum(self._inv(other.scale) * self.scale)
loc_matmul_cov = np.matmul((other.loc - self.loc),
self._inv(other.scale))
tri_matmul = np.matmul(loc_matmul_cov, (other.loc - self.loc))
k = list(self.scale.shape)[0]
ln_cov = np.log(self._det(other.scale)) - np.log(self._det(self.scale))
kl = 0.5 * (tr_cov_matmul + tri_matmul - k + ln_cov)
return kl
class DistributionTest(unittest.TestCase): class DistributionTest(unittest.TestCase):
def setUp(self, use_gpu=False): def setUp(self, use_gpu=False):
self.use_gpu = use_gpu self.use_gpu = use_gpu
...@@ -410,6 +472,105 @@ class DistributionTest(unittest.TestCase): ...@@ -410,6 +472,105 @@ class DistributionTest(unittest.TestCase):
np.testing.assert_allclose( np.testing.assert_allclose(
output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance) output_lp_variable, gt_lp, rtol=tolerance, atol=tolerance)
def test_categorical_distribution(self,
batch_size=2,
dims=3,
tolerance=1e-6):
test_program = fluid.Program()
logits_np = np.random.randn(batch_size, dims).astype('float32')
other_logits_np = np.random.randn(batch_size, dims).astype('float32')
with fluid.program_guard(test_program):
logits = layers.data(name='logits', shape=[dims], dtype='float32')
other_logits = layers.data(
name='other_logits', shape=[dims], dtype='float32')
categorical_np = Categorical(logits_np)
other_categorical_np = Categorical(other_logits_np)
entropy_np = categorical_np.entropy()
kl_np = categorical_np.kl_divergence(other_categorical_np)
self.executor.run(fluid.default_main_program())
np_categorical = CategoricalNumpy(logits_np)
np_other_categorical = CategoricalNumpy(other_logits_np)
gt_entropy_np = np_categorical.entropy()
gt_kl_np = np_categorical.kl_divergence(np_other_categorical)
# result calculated by paddle
[output_entropy_np,
output_kl_np] = self.executor.run(program=test_program,
feed={'logits': logits_np},
fetch_list=[entropy_np, kl_np])
np.testing.assert_allclose(
output_entropy_np, gt_entropy_np, rtol=tolerance)
np.testing.assert_allclose(output_kl_np, gt_kl_np, rtol=tolerance)
def test_multivariateNormalDiag_distribution(self,
batch_size=2,
tolerance=1e-6):
test_program = fluid.Program()
loc_np = np.random.random(batch_size, ).astype('float32')
scale_np = np.diag(np.random.random(batch_size, )).astype('float32')
other_loc_np = np.random.random(batch_size, ).astype('float32')
other_scale_np = np.diag(np.random.random(batch_size, )).astype(
'float32')
with fluid.program_guard(test_program):
loc = layers.data(
name='loc',
shape=[batch_size, ],
dtype='float32',
append_batch_size=False)
scale = layers.data(
name='scale',
shape=[batch_size, batch_size],
dtype='float32',
append_batch_size=False)
other_loc = layers.data(
name='other_loc',
shape=[batch_size, ],
dtype='float32',
append_batch_size=False)
other_scale = layers.data(
name='other_scale',
shape=[batch_size, batch_size],
dtype='float32',
append_batch_size=False)
multivariate_np = MultivariateNormalDiag(loc, scale)
other_multivariate_np = MultivariateNormalDiag(other_loc,
other_scale)
entropy_np = multivariate_np.entropy()
other_entropy_np = other_multivariate_np.entropy()
kl_np = multivariate_np.kl_divergence(other_multivariate_np)
self.executor.run(fluid.default_main_program())
np_multivariate = MultivariateNormalDiagNumpy(loc_np, scale_np)
np_other_multivariate = MultivariateNormalDiagNumpy(other_loc_np,
other_scale_np)
gt_entropy_np = np_multivariate.entropy()
gt_kl_np = np_multivariate.kl_divergence(np_other_multivariate)
# result calculated by paddle
[output_entropy_np,
output_kl_np] = self.executor.run(program=test_program,
feed={
'loc': loc_np,
'scale': scale_np,
'other_loc': other_loc_np,
'other_scale': other_scale_np
},
fetch_list=[entropy_np, kl_np])
np.testing.assert_allclose(
output_entropy_np, gt_entropy_np, rtol=tolerance)
np.testing.assert_allclose(output_kl_np, gt_kl_np, rtol=tolerance)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册