Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
633756ad
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
633756ad
编写于
2月 20, 2018
作者:
H
helinwang
提交者:
GitHub
2月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8361 from tonyyang-svail/backward_on_parallel_do
Backward on parallel do using nccl
上级
a040239d
4b957af2
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
191 addition
and
41 deletion
+191
-41
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+5
-4
paddle/fluid/framework/framework.proto
paddle/fluid/framework/framework.proto
+1
-0
paddle/fluid/operators/nccl_op.cc
paddle/fluid/operators/nccl_op.cc
+37
-9
paddle/fluid/operators/parallel_do_op.cc
paddle/fluid/operators/parallel_do_op.cc
+24
-2
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+2
-1
python/paddle/v2/fluid/backward.py
python/paddle/v2/fluid/backward.py
+94
-14
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+1
-1
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+4
-2
python/paddle/v2/fluid/optimizer.py
python/paddle/v2/fluid/optimizer.py
+1
-1
python/paddle/v2/fluid/tests/test_error_clip.py
python/paddle/v2/fluid/tests/test_error_clip.py
+1
-1
python/paddle/v2/fluid/tests/unittests/test_parallel_op.py
python/paddle/v2/fluid/tests/unittests/test_parallel_op.py
+21
-6
未找到文件。
paddle/fluid/framework/executor.cc
浏览文件 @
633756ad
...
...
@@ -55,11 +55,13 @@ static void CreateTensor(Variable* var, proto::VarType::Type var_type) {
var
->
GetMutable
<
platform
::
PlaceList
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
READER
)
{
var
->
GetMutable
<
ReaderHolder
>
();
}
else
if
(
var_type
==
proto
::
VarType
::
NCCL_COM
)
{
// GetMutable will be called in ncclInit
}
else
{
PADDLE_THROW
(
"Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER]"
,
"LOD_RANK_TABLE, PLACE_LIST, READER
, NCCL_COM
]"
,
var_type
);
}
}
...
...
@@ -120,14 +122,13 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
VLOG
(
4
)
<<
op
->
DebugStringEx
(
local_scope
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
RecordEvent
record_event
(
op
->
Type
(),
pool
.
Get
(
place_
));
VLOG
(
3
)
<<
place_
<<
" "
<<
op
->
DebugStringEx
(
local_scope
);
op
->
Run
(
*
local_scope
,
place_
);
// Wait current device context.
VLOG
(
3
)
<<
op
->
DebugStringEx
(
local_scope
);
if
(
FLAGS_benchmark
)
{
VLOG
(
2
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
...
...
paddle/fluid/framework/framework.proto
浏览文件 @
633756ad
...
...
@@ -113,6 +113,7 @@ message VarType {
PLACE_LIST
=
14
;
READER
=
15
;
CHANNEL
=
16
;
NCCL_COM
=
17
;
}
required
Type
type
=
1
;
...
...
paddle/fluid/operators/nccl_op.cc
浏览文件 @
633756ad
...
...
@@ -14,10 +14,13 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
namespace
paddle
{
namespace
operators
{
static
constexpr
char
kParallelScopes
[]
=
"parallel_scopes"
;
// NCCLinitOp
class
NCCLInitOp
:
public
framework
::
OperatorBase
{
public:
...
...
@@ -29,11 +32,22 @@ class NCCLInitOp : public framework::OperatorBase {
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
scope
.
FindVar
(
Input
(
kParallelScopes
)),
"Can not find variable '%s' in the scope."
,
kParallelScopes
);
const
auto
&
name
=
Output
(
"Communicator"
);
PADDLE_ENFORCE_NOT_NULL
(
scope
.
FindVar
(
name
),
"Can not find variable '%s' in the scope."
,
name
);
std
::
vector
<
int
>
gpus
=
Attr
<
std
::
vector
<
int
>>
(
"gpus"
);
PADDLE_ENFORCE
(
!
gpus
.
empty
(),
"Attr(gpus) should not be empty."
);
// A parallel do may not use all the gpus. For example, the batch size is 7
// in the last batch while we have 8 gpu. In this case, parallel_do will
// create 7 parallel scopes, so should ncclInitOp create 7 gpu peers
auto
&
parallel_scopes
=
scope
.
FindVar
(
Input
(
kParallelScopes
))
->
Get
<
std
::
vector
<
framework
::
Scope
*>>
();
std
::
vector
<
int
>
gpus
(
parallel_scopes
.
size
());
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
parallel_scopes
.
size
());
++
i
)
{
gpus
[
i
]
=
i
;
}
PADDLE_ENFORCE
(
!
gpus
.
empty
(),
"NCCL init with 0 gpus."
);
if
(
scope
.
FindVar
(
name
)
==
nullptr
)
{
PADDLE_THROW
(
"Output(Communicator) is needed for ncclInit operator."
);
...
...
@@ -45,17 +59,29 @@ class NCCLInitOp : public framework::OperatorBase {
}
};
class
NCCLInitOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Communicator"
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
var_type
=
framework
::
proto
::
VarType
::
NCCL_COM
;
out_var
.
SetType
(
var_type
);
}
};
class
NCCLInitOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
};
class
NCCLInitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
NCCLInitOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
kParallelScopes
,
"The working place of parallel do."
);
AddOutput
(
"Communicator"
,
"Create Communicator for communicating between gpus"
);
AddAttr
<
std
::
vector
<
int
>>
(
"gpus"
,
"(vector<int>) GPU id lists"
);
AddAttr
<
int
>
(
"dtype"
,
"(int, default 5 (FP32)) "
"Output data type"
)
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
AddComment
(
R"DOC(
NCCLInit Operator.
...
...
@@ -78,7 +104,7 @@ class NCCLAllReduceOp : public framework::OperatorWithKernel {
ctx
->
HasInput
(
"Communicator"
),
" Input(Communicator) of AllReduce op input should not be NULL"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"
Input(X) of AllReduce op in
put should not be NULL"
);
"
Output(Out) of AllReduce op out
put should not be NULL"
);
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
...
...
@@ -215,7 +241,9 @@ Bcast the tensors.
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
ncclInit
,
ops
::
NCCLInitOp
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
NCCLInitOpMaker
);
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
NCCLInitOpMaker
,
ops
::
NCCLInitOpVarTypeInference
,
ops
::
NCCLInitOpShapeInference
);
REGISTER_OP_WITHOUT_GRADIENT
(
ncclAllReduce
,
ops
::
NCCLAllReduceOp
,
ops
::
NCCLAllReduceOpMaker
);
...
...
paddle/fluid/operators/parallel_do_op.cc
浏览文件 @
633756ad
...
...
@@ -30,6 +30,7 @@ static constexpr char kOutputs[] = "outputs";
static
constexpr
char
kParallelScopes
[]
=
"parallel_scopes"
;
static
constexpr
char
kParallelBlock
[]
=
"sub_block"
;
static
constexpr
char
kUseNCCL
[]
=
"use_nccl"
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
...
...
@@ -194,6 +195,8 @@ class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
kOutputs
,
""
).
AsDuplicable
();
AddOutput
(
kParallelScopes
,
""
);
AddAttr
<
framework
::
BlockDesc
*>
(
kParallelBlock
,
""
);
AddAttr
<
bool
>
(
kUseNCCL
,
"true if we use nccl on backward"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
ParallelDo Operator.
)DOC"
);
...
...
@@ -216,7 +219,6 @@ class ParallelDoGradOp : public framework::OperatorBase {
auto
&
sub_scopes
=
scope
.
FindVar
(
Input
(
kParallelScopes
))
->
Get
<
std
::
vector
<
framework
::
Scope
*>>
();
auto
&
places
=
scope
.
FindVar
(
Input
(
kPlaces
))
->
Get
<
platform
::
PlaceList
>
();
// feed output@grad
...
...
@@ -243,7 +245,24 @@ class ParallelDoGradOp : public framework::OperatorBase {
}
WaitOnPlaces
(
places
);
AccumulateGrad
(
scope
,
place
,
sub_scopes
,
places
);
// NCCL allreduce op will be added by backward,
// so no need to explicitly accumulate grad
if
(
!
(
Attr
<
bool
>
(
kUseNCCL
)))
{
AccumulateGrad
(
scope
,
place
,
sub_scopes
,
places
);
}
else
{
for
(
auto
&
place
:
places
)
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
),
"NCCL only supports cuda place"
);
}
}
for
(
auto
&
s
:
Outputs
(
framework
::
GradVarName
(
kParameters
)))
{
if
(
s
==
"@EMPTY@"
)
{
continue
;
}
VLOG
(
3
)
<<
"Moving "
<<
s
;
CopyOrShare
(
*
sub_scopes
[
0
]
->
FindVar
(
s
),
place
,
scope
.
FindVar
(
s
));
}
WaitOnPlaces
(
places
);
}
void
AccumulateGrad
(
const
framework
::
Scope
&
scope
,
...
...
@@ -251,6 +270,9 @@ class ParallelDoGradOp : public framework::OperatorBase {
const
std
::
vector
<
framework
::
Scope
*>
&
sub_scopes
,
const
platform
::
PlaceList
&
places
)
const
{
for
(
auto
&
s
:
Outputs
(
framework
::
GradVarName
(
kParameters
)))
{
if
(
s
==
"@EMPTY@"
)
{
continue
;
}
VLOG
(
3
)
<<
"Accumulating "
<<
s
;
if
(
s
==
framework
::
kEmptyVarName
)
continue
;
std
::
string
tmp_name
;
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
633756ad
...
...
@@ -239,7 +239,8 @@ void BindVarDsec(py::module &m) {
.
value
(
"LOD_RANK_TABLE"
,
proto
::
VarType
::
LOD_RANK_TABLE
)
.
value
(
"LOD_TENSOR_ARRAY"
,
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
.
value
(
"PLACE_LIST"
,
proto
::
VarType
::
PLACE_LIST
)
.
value
(
"READER"
,
proto
::
VarType
::
READER
);
.
value
(
"READER"
,
proto
::
VarType
::
READER
)
.
value
(
"NCCL_COM"
,
proto
::
VarType
::
NCCL_COM
);
}
void
BindOpDesc
(
py
::
module
&
m
)
{
...
...
python/paddle/v2/fluid/backward.py
浏览文件 @
633756ad
...
...
@@ -199,12 +199,76 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
return
op_descs
import
proto.framework_pb2
as
framework_pb2
def
serialize_op_decs
(
op_desc
):
protostr
=
op_desc
.
serialize_to_string
()
proto
=
framework_pb2
.
OpDesc
.
FromString
(
str
(
protostr
))
return
proto
.
__str__
()
def
_callback_lookup_
(
op
):
"""
Only used in _append_backward_ops_
Build and returns a callback function for certain op. For example
parallel_do: AllReduce
:param op:
:return: callback function
"""
if
op
.
type
==
'parallel_do'
and
op
.
attr
(
'use_nccl'
):
param_names
=
set
(
op
.
input
(
'parameters'
))
param_grad_names
=
[
n
+
"@GRAD"
for
n
in
param_names
]
class
ParallelDoCallBack
(
object
):
def
__init__
(
self
,
param_grad_names
,
parallel_scopes_name
):
self
.
has_inserted_nccl_init
=
False
self
.
param_grad_names
=
param_grad_names
self
.
parallel_scopes_name
=
parallel_scopes_name
def
__call__
(
self
,
block
,
context
):
if
not
self
.
has_inserted_nccl_init
:
op_desc
=
_create_op_desc_
(
"ncclInit"
,
{
"parallel_scopes"
:
self
.
parallel_scopes_name
},
{
"Communicator"
:
[
'nccl_com__do_not_change_'
]},
{})
block
.
program
.
global_block
().
desc
.
append_op
().
copy_from
(
op_desc
)
self
.
has_inserted_nccl_init
=
True
current_op_desc
=
context
[
"__current_op_desc__"
]
for
o_param
in
current_op_desc
.
output_names
():
for
o_argu
in
current_op_desc
.
output
(
o_param
):
if
o_argu
in
self
.
param_grad_names
:
allreduce_out_name
=
o_argu
+
"__nccl_all_reduce__"
op_desc
=
_create_op_desc_
(
"ncclAllReduce"
,
{
"X"
:
[
o_argu
],
"Communicator"
:
[
'nccl_com__do_not_change_'
]
},
{
"Out"
:
[
allreduce_out_name
]},
{
"reduction"
:
"ncclSum"
})
block
.
desc
.
append_op
().
copy_from
(
op_desc
)
op_desc
=
_create_op_desc_
(
"assign"
,
{
"X"
:
[
allreduce_out_name
]},
{
"Out"
:
[
o_argu
]},
{})
block
.
desc
.
append_op
().
copy_from
(
op_desc
)
return
ParallelDoCallBack
(
param_grad_names
,
op
.
output
(
"parallel_scopes"
))
else
:
return
None
def
_append_backward_ops_
(
block
,
ops
,
target_block
,
no_grad_dict
,
grad_to_var
,
callback
=
None
):
callback
s
=
None
):
"""
Create all grad ops, and insert them into given block
...
...
@@ -220,14 +284,11 @@ def _append_backward_ops_(block,
val(str): corresponding forward variable name
callback(callable object): a callable object used to decorate new generated grad ops
"""
if
callback
is
None
:
def
empty_callback
(
block
,
context
):
pass
callback
=
empty_callback
elif
not
hasattr
(
callback
,
'__call__'
):
raise
ValueError
(
"'callback' must be a callable object."
)
if
callbacks
is
not
None
:
assert
(
isinstance
(
callbacks
,
list
))
for
cb
in
callbacks
:
if
not
hasattr
(
cb
,
'__call__'
):
raise
ValueError
(
"'callback' must be a callable object."
)
# grad_op_descs holds created grad_op, and will be appended to target_block
grad_op_descs
=
[]
...
...
@@ -238,8 +299,17 @@ def _append_backward_ops_(block,
if
op
.
has_attr
(
"sub_block"
):
sub_block
=
program
.
block
(
op
.
block_attr
(
"sub_block"
))
grad_sub_block
=
program
.
create_block
(
parent_idx
=
sub_block
.
idx
)
_append_backward_ops_
(
sub_block
,
sub_block
.
ops
,
grad_sub_block
,
no_grad_dict
,
grad_to_var
)
cb
=
_callback_lookup_
(
op
)
if
cb
is
not
None
:
if
callbacks
is
None
:
new_callbacks
=
[
cb
]
else
:
new_callbacks
=
callbacks
+
[
_callback_lookup_
(
op
)]
_append_backward_ops_
(
sub_block
,
sub_block
.
ops
,
grad_sub_block
,
no_grad_dict
,
grad_to_var
,
new_callbacks
)
else
:
_append_backward_ops_
(
sub_block
,
sub_block
.
ops
,
grad_sub_block
,
no_grad_dict
,
grad_to_var
,
callbacks
)
grad_sub_block_list
.
append
(
grad_sub_block
.
desc
)
# Getting op's corresponding grad_op
...
...
@@ -258,7 +328,11 @@ def _append_backward_ops_(block,
for
op_desc
in
grad_op_descs
:
new_op_desc
=
target_block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op_desc
)
callback
(
block
=
target_block
,
context
=
grad_to_var
)
grad_to_var
[
"__current_op_desc__"
]
=
new_op_desc
if
callbacks
is
not
None
:
assert
(
isinstance
(
callbacks
,
list
))
for
cb
in
callbacks
:
cb
(
block
=
target_block
,
context
=
grad_to_var
)
def
_append_backward_vars_
(
block
,
start_op_idx
,
grad_to_var
,
grad_info_map
):
...
...
@@ -296,6 +370,9 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
# infer_shape and infer_type
op_desc
.
infer_var_type
(
block
.
desc
)
op_desc
.
infer_shape
(
block
.
desc
)
# ncclInit dones't need to set data_type
if
op_desc
.
type
()
==
'ncclInit'
:
continue
for
arg
in
op_desc
.
output_arg_names
():
if
arg
in
new_vars
:
_infer_var_data_type_
(
arg
,
block
)
...
...
@@ -335,7 +412,8 @@ def _get_stop_gradients_(program):
return
no_grad_dict
def
append_backward
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
,
callback
=
None
):
def
append_backward
(
loss
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
"""
Append backward part to main_program
...
...
@@ -351,6 +429,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
if
callbacks
is
not
None
:
isinstance
(
callbacks
,
list
)
program
=
loss
.
block
.
program
if
no_grad_set
is
None
:
...
...
@@ -378,7 +458,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, callback=None):
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
block_no_grad_set
))
_append_backward_ops_
(
root_block
,
op_path
,
root_block
,
no_grad_dict
,
grad_to_var
,
callback
)
grad_to_var
,
callback
s
)
# Because calc_gradient may be called multiple times,
# we need rename the internal gradient variables so that they have
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
633756ad
...
...
@@ -490,7 +490,7 @@ class Operator(object):
'feed'
,
'fetch'
,
'save'
,
'load'
,
'recurrent'
,
'rnn_memory_helper_grad'
,
'conditional_block'
,
'while'
,
'send'
,
'recv'
,
'listen_and_serv'
,
'parallel_do'
,
'save_combine'
,
'load_combine'
'load_combine'
,
'ncclInit'
}
if
type
not
in
no_kernel_op_set
:
self
.
desc
.
infer_var_type
(
self
.
block
.
desc
)
...
...
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
633756ad
...
...
@@ -237,12 +237,13 @@ class ParallelDo(object):
ParallelDo class is used to create a ParallelDo.
"""
def
__init__
(
self
,
places
,
name
=
None
):
def
__init__
(
self
,
places
,
use_nccl
=
False
,
name
=
None
):
self
.
helper
=
LayerHelper
(
"parallel_do"
,
name
=
name
)
self
.
inputs
=
[]
self
.
places
=
places
self
.
outputs
=
[]
self
.
status
=
StaticRNN
.
BEFORE_RNN_BLOCK
self
.
use_nccl
=
use_nccl
def
do
(
self
):
return
BlockGuardWithCompletion
(
self
)
...
...
@@ -325,7 +326,8 @@ class ParallelDo(object):
},
outputs
=
{
'outputs'
:
outputs
,
'parallel_scopes'
:
[
step_scope
]},
attrs
=
{
'sub_block'
:
current_block
})
attrs
=
{
'sub_block'
:
current_block
,
'use_nccl'
:
self
.
use_nccl
})
class
BlockGuardWithCompletion
(
BlockGuard
):
...
...
python/paddle/v2/fluid/optimizer.py
浏览文件 @
633756ad
...
...
@@ -225,7 +225,7 @@ class Optimizer(object):
`create_optimization_pass()` into one.
"""
params_grads
=
append_backward
(
loss
,
parameter_list
,
no_grad_set
,
error_clip_callback
)
[
error_clip_callback
]
)
params_grads
=
append_gradient_clip_ops
(
params_grads
)
...
...
python/paddle/v2/fluid/tests/test_error_clip.py
浏览文件 @
633756ad
...
...
@@ -43,7 +43,7 @@ prog_clip.block(0).var(hidden1.name).set_error_clip(
avg_cost_clip
=
prog_clip
.
block
(
0
).
var
(
avg_cost
.
name
)
fluid
.
backward
.
append_backward
(
loss
=
avg_cost
)
fluid
.
backward
.
append_backward
(
loss
=
avg_cost_clip
,
callback
=
fluid
.
clip
.
error_clip_callback
)
loss
=
avg_cost_clip
,
callback
s
=
[
fluid
.
clip
.
error_clip_callback
]
)
hidden1_grad
=
prog
.
block
(
0
).
var
(
hidden1
.
name
+
"@GRAD"
)
hidden1_grad_clip
=
prog_clip
.
block
(
0
).
var
(
hidden1
.
name
+
"@GRAD"
)
...
...
python/paddle/v2/fluid/tests/unittests/test_parallel_op.py
浏览文件 @
633756ad
...
...
@@ -67,12 +67,25 @@ class BaseParallelForTest(unittest.TestCase):
fetch
=
fetch
,
place
=
gpu
,
use_parallel
=
True
)
result_gpu_nccl
=
self
.
_run_test_impl_
(
callback
=
callback
,
feed
=
feed
,
fetch
=
fetch
,
place
=
gpu
,
use_parallel
=
True
,
use_nccl
=
True
)
self
.
_assert_same_
(
fetch
,
result_cpu
,
result_cpu_parallel
,
result_gpu
,
result_gpu_parallel
)
result_gpu
,
result_gpu_parallel
,
result_gpu_nccl
)
else
:
self
.
_assert_same_
(
fetch
,
result_cpu
,
result_cpu_parallel
)
def
_run_test_impl_
(
self
,
callback
,
feed
,
fetch
,
place
,
use_parallel
=
False
):
def
_run_test_impl_
(
self
,
callback
,
feed
,
fetch
,
place
,
use_parallel
=
False
,
use_nccl
=
False
):
"""
Run a single test, returns the fetch values
Args:
...
...
@@ -96,7 +109,7 @@ class BaseParallelForTest(unittest.TestCase):
# Automatically insert parallel do if use_parallel = True
if
use_parallel
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
,
use_nccl
=
use_nccl
)
data
=
next
(
generator
)
if
isinstance
(
data
,
fluid
.
Variable
):
...
...
@@ -137,7 +150,9 @@ class BaseParallelForTest(unittest.TestCase):
"""
def
_impl_
(
a
,
b
,
fetch_id
,
item_id
):
item_str
=
[
'CPU'
,
'ParallelCPU'
,
'GPU'
,
'ParallelGPU'
]
item_str
=
[
'CPU'
,
'ParallelCPU'
,
'GPU'
,
'ParallelGPU'
,
'ParallelGPUNCCL'
]
flag
=
numpy
.
allclose
(
a
,
b
,
rtol
=
0.1
,
atol
=
1e-3
)
self
.
assertTrue
(
flag
,
"The {0} are different in {1}, {2} vs {3}"
.
format
(
...
...
@@ -198,5 +213,5 @@ class ParallelOpTestMultipleInput(BaseParallelForTest):
fetch
=
[
'fc1.w@GRAD'
,
'fc2.w@GRAD'
,
'fc3.w@GRAD'
])
#
if __name__ == '__main__':
#
unittest.main()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录