未验证 提交 6327c33b 编写于 作者: J JingZhuangzhuang 提交者: GitHub

Add dropout convert test (#35488)

* add dropout convert test

* modify dropout convert test
Co-authored-by: Nxiaoxiaohehe001 <hiteezsf@163.com>
上级 16e40513
......@@ -157,7 +157,7 @@ bool SimplifyWithBasicOpsPass::SimplifyDropout(
float scale =
1.0f - BOOST_GET_CONST(float, dropout_op_desc->GetAttr("dropout_prob"));
framework::OpDesc new_op_desc;
framework::OpDesc new_op_desc(dropout_op_desc->Block());
new_op_desc.SetType("scale");
new_op_desc.SetInput("X", {dropout_x->Name()});
new_op_desc.SetOutput("Out", {dropout_out->Name()});
......
......@@ -757,6 +757,17 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
}
if (op_type == "scale") {
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
if (x_shape.size() == 1) {
VLOG(3) << "dropout op does not support input's dim is 1 in tensorrt.";
return false;
}
}
if (op_type == "prelu") {
if (desc.Input("X").size() != 1) {
VLOG(3) << "Invalid input X's size of prelu TRT converter. "
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertDropoutTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(dims, batch, attrs: List[Dict[str, Any]]):
if dims == 1:
return np.ones([64]).astype(np.float32)
elif dims == 2:
return np.ones([3, 64]).astype(np.float32)
elif dims == 3:
return np.ones([3, 64, 64]).astype(np.float32)
else:
return np.ones([batch, 3, 64, 64]).astype(np.float32)
for dims in [1, 2, 3, 4]:
for batch in [1, 2, 4]:
for fix_seed in [False, True]:
for dropout_implementation in [
"downgrade_in_infer", "upscale_in_train"
]:
for dropout_prob in [np.random.random()]:
for seed in [0, 64, 128, 512]:
self.dims = dims
dics = [{
"fix_seed": fix_seed,
"dropout_implementation":
dropout_implementation,
"dropout_prob": dropout_prob,
"seed": seed,
"is_test": True
}]
ops_config = [{
"op_type": "dropout",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {
"Out": ["dropout_output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1,
dims, batch, dics))
},
outputs=["dropout_output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [1]}
self.dynamic_shape.max_input_shape = {"input_data": [128]}
self.dynamic_shape.opt_input_shape = {"input_data": [64]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 64]}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"input_data": [1, 32, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [3, 64, 64]}
else:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3, 32, 32]
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 3, 64, 64]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 64, 64]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if attrs[0]['dropout_implementation'] == "upscale_in_train":
return 0, 2
elif self.dims == 1:
return 0, 3
else:
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if self.dims == 2:
return True
return False
self.add_skip_case(
teller1, SkipReasons.TRT_NOT_IMPLEMENTED,
"When input dims is 2, pulgin will product a 4 dims output.")
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册