Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
62f455e0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
62f455e0
编写于
12月 30, 2020
作者:
C
cc
提交者:
GitHub
12月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support quantizing program_desc (#29526)
* Support quantizing program_desc, test=develop
上级
47d10c55
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
343 addition
and
2 deletion
+343
-2
python/paddle/fluid/contrib/slim/quantization/quantize_transpiler_v2.py
...fluid/contrib/slim/quantization/quantize_transpiler_v2.py
+177
-0
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+3
-2
python/paddle/fluid/contrib/slim/tests/test_quantize_transpiler_v2.py
...e/fluid/contrib/slim/tests/test_quantize_transpiler_v2.py
+163
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/quantize_transpiler_v2.py
0 → 100644
浏览文件 @
62f455e0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
collections
import
logging
import
numpy
as
np
from
....
import
core
from
....framework
import
Program
,
Operator
,
Variable
,
program_guard
from
....
import
unique_name
from
....layer_helper
import
LayerHelper
from
....param_attr
import
ParamAttr
from
....initializer
import
Constant
from
....log_helper
import
get_logger
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
class
QuantizeTranspilerV2
(
object
):
def
__init__
(
self
,
weight_bits
=
8
,
activation_bits
=
8
,
weight_quantize_type
=
'abs_max'
,
activation_quantize_type
=
'abs_max'
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
skip_pattern
=
[
'skip_quant'
]):
"""
Add quant_dequant op before the quantized op to quantize the fluid Program.
It is a patch for distributed quantization, we will support others module for
distributed quantization.
Args:
weight_bits(int): the bit of quantized weight.
activation_bits(int): the bit of quantized activation.
weight_quantize_type(str): the quantization type for weight.
Only support to be 'abs_max' for now.
activation_quantize_type(str): the quantization type for activation.
Only support to be 'abs_max' for now.
quantizable_op_type(str): set the op type for quantization.
skip_pattern(str|list): The user-defined quantization skip pattern, which
will be presented in the name scope of an op. When the skip pattern is
detected in an op's name scope, the corresponding op will not be quantized.
"""
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
assert
activation_quantize_type
==
"abs_max"
,
\
"activation_quantize_type should be abs_max for now."
assert
weight_quantize_type
==
"abs_max"
,
\
"weight_quantize_type should be abs_max for now."
self
.
_activation_quantize_type
=
activation_quantize_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
quantizable_op_type
self
.
_quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_ops
]
self
.
_skip_pattern
=
skip_pattern
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
)
def
apply
(
self
,
program
,
startup_program
):
"""
Apply quantization to fluid Program.
Args:
program(Program): the train or test program to be quantized.
startup_program(Program): the corresponding startup_program.
Returns:
None
"""
assert
isinstance
(
program
,
Program
),
\
"program must be the instance of Program"
assert
isinstance
(
startup_program
,
Program
),
\
"startup_program must be the instance of Program"
quant_dequant_vars
=
[
collections
.
OrderedDict
()
for
_
in
range
(
len
(
program
.
blocks
))
]
with
program_guard
(
program
,
startup_program
):
for
block
in
program
.
blocks
:
ops
=
list
(
block
.
ops
)
for
op
in
ops
:
if
op
.
type
in
self
.
_quantizable_ops
and
\
(
not
self
.
_is_skip_quant
(
op
)):
self
.
_transform_forward
(
block
,
op
,
quant_dequant_vars
)
for
block
in
program
.
blocks
:
ops
=
list
(
block
.
ops
)
for
op
in
ops
:
if
op
.
type
in
self
.
_quantizable_grad_ops
and
\
(
not
self
.
_is_skip_quant
(
op
)):
self
.
_transform_backward
(
block
,
op
,
quant_dequant_vars
)
def
_is_skip_quant
(
self
,
op
):
"""
Analyse whether the op should skip quantization or not.
"""
user_skipped
=
False
if
isinstance
(
self
.
_skip_pattern
,
list
):
user_skipped
=
op
.
has_attr
(
"op_namescope"
)
and
\
any
(
pattern
in
op
.
attr
(
"op_namescope"
)
\
for
pattern
in
self
.
_skip_pattern
)
elif
isinstance
(
self
.
_skip_pattern
,
str
):
user_skipped
=
op
.
has_attr
(
"op_namescope"
)
and
\
op
.
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
return
user_skipped
def
_transform_forward
(
self
,
block
,
op
,
quant_dequant_vars
):
op
.
_set_attr
(
"quantization_type"
,
"qat_with_weight"
)
idx
=
block
.
ops
.
index
(
op
)
block_id
=
block
.
idx
for
in_name
in
op
.
input_arg_names
:
if
in_name
in
quant_dequant_vars
[
block_id
]:
quant_dequant_var
=
quant_dequant_vars
[
block_id
][
in_name
]
else
:
in_var
=
block
.
var
(
in_name
)
quant_bits
=
self
.
_weight_bits
if
in_var
.
persistable
\
else
self
.
_activation_bits
quant_type
=
self
.
_weight_quantize_type
if
in_var
.
persistable
\
else
self
.
_activation_quantize_type
if
quant_type
==
"abs_max"
:
quant_dequant_var
=
self
.
_insert_quant_dequant_abs_max_op
(
block
,
idx
,
in_var
,
quant_bits
)
else
:
_logger
.
error
(
"Quant_type only supported to be abs_max"
)
quant_dequant_vars
[
block_id
][
in_name
]
=
quant_dequant_var
op
.
_rename_input
(
in_name
,
quant_dequant_var
.
name
)
def
_transform_backward
(
self
,
block
,
op
,
quant_dequant_vars
):
block_id
=
block
.
idx
no_dequanted_input_vars
=
True
for
name
in
op
.
input_arg_names
:
if
name
in
quant_dequant_vars
[
block_id
]:
dequant_var
=
quant_dequant_vars
[
block_id
][
name
]
op
.
_rename_input
(
name
,
dequant_var
.
name
)
no_dequanted_input_vars
=
False
if
no_dequanted_input_vars
:
raise
ValueError
(
"There is no dequanted inputs for op %s."
%
(
op
.
type
))
def
_insert_quant_dequant_abs_max_op
(
self
,
block
,
idx
,
in_var
,
quant_bits
):
quant_dequant_var
=
block
.
create_var
(
type
=
in_var
.
type
,
name
=
"{}.quant_dequant"
.
format
(
in_var
.
name
),
shape
=
in_var
.
shape
,
dtype
=
in_var
.
dtype
)
scale_var
=
self
.
helper
.
create_parameter
(
attr
=
ParamAttr
(
name
=
"{}.quant_dequant.scale"
.
format
(
in_var
.
name
),
initializer
=
Constant
(
0.001
),
trainable
=
False
),
shape
=
[
1
],
dtype
=
in_var
.
dtype
)
scale_var
.
stop_gradient
=
True
inputs
=
{
'X'
:
in_var
}
outputs
=
{
'Out'
:
quant_dequant_var
,
'OutScale'
:
scale_var
}
attrs
=
{
'bit_length'
:
quant_bits
}
block
.
_insert_op
(
idx
,
type
=
'fake_quantize_dequantize_abs_max'
,
attrs
=
attrs
,
inputs
=
inputs
,
outputs
=
outputs
)
return
quant_dequant_var
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
62f455e0
...
...
@@ -123,8 +123,9 @@ if(WIN32)
list
(
REMOVE_ITEM TEST_OPS test_light_nas
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2
)
endif
()
if
(
LINUX AND WITH_MKLDNN
)
...
...
python/paddle/fluid/contrib/slim/tests/test_quantize_transpiler_v2.py
0 → 100644
浏览文件 @
62f455e0
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import
os
import
unittest
import
random
import
numpy
as
np
import
six
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization.quantize_transpiler_v2
import
QuantizeTranspilerV2
from
paddle.fluid
import
core
paddle
.
enable_static
()
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
"0"
os
.
environ
[
"CPU_NUM"
]
=
"1"
def
conv_net
(
img
,
label
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'max'
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
pool_type
=
'avg'
,
act
=
"relu"
)
with
fluid
.
name_scope
(
"skip_quant"
):
hidden
=
fluid
.
layers
.
fc
(
input
=
conv_pool_1
,
size
=
100
,
act
=
'relu'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
class
TestQuantizeProgramPass
(
unittest
.
TestCase
):
def
quantize_program
(
self
,
use_cuda
,
seed
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
False
):
def
build_program
(
main
,
startup
,
is_test
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
loss
=
conv_net
(
img
,
label
)
if
not
is_test
:
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.0001
)
opt
.
minimize
(
loss
)
return
[
img
,
label
],
loss
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
feeds
,
loss
=
build_program
(
train_program
,
startup_program
,
False
)
build_program
(
test_program
,
startup_program
,
True
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
if
not
for_ci
:
train_graph
=
IrGraph
(
core
.
Graph
(
train_program
.
desc
),
for_test
=
False
)
train_graph
.
draw
(
'.'
,
'train_program_1'
)
test_graph
=
IrGraph
(
core
.
Graph
(
test_program
.
desc
),
for_test
=
True
)
test_graph
.
draw
(
'.'
,
'test_program_1'
)
qt
=
QuantizeTranspilerV2
(
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
,
'pool2d'
])
qt
.
apply
(
train_program
,
startup_program
)
qt
.
apply
(
test_program
,
startup_program
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
startup_program
)
if
not
for_ci
:
train_graph
=
IrGraph
(
core
.
Graph
(
train_program
.
desc
),
for_test
=
False
)
train_graph
.
draw
(
'.'
,
'train_program_2'
)
test_graph
=
IrGraph
(
core
.
Graph
(
test_program
.
desc
),
for_test
=
True
)
test_graph
.
draw
(
'.'
,
'test_program_2'
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
build_strategy
.
enable_inplace
=
False
build_strategy
.
fuse_all_reduce_ops
=
False
binary
=
fluid
.
CompiledProgram
(
train_program
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
iters
=
2
batch_size
=
8
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
with
fluid
.
scope_guard
(
scope
):
for
_
in
range
(
iters
):
data
=
next
(
train_reader
())
loss_v
=
exe
.
run
(
binary
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'loss'
,
loss_v
))
if
not
for_ci
:
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
'./infer_model'
,
[
'image'
,
'label'
],
[
loss
],
exe
,
test_program
)
def
test_quantize_program_gpu
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
quantize_program
(
use_cuda
=
True
,
seed
=
1
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
def
test_quantize_program_cpu
(
self
):
self
.
quantize_program
(
use_cuda
=
False
,
seed
=
2
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录