Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
62c51e44
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
62c51e44
编写于
5月 10, 2018
作者:
D
dzhwinter
提交者:
GitHub
5月 10, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add float64 tests" (#10450)
* "add float64 tests" * "fix based comment" * "fixed based comment"
上级
01a2773d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
91 addition
and
8 deletion
+91
-8
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+6
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+11
-6
python/paddle/fluid/tests/unittests/test_network_with_dtype.py
...n/paddle/fluid/tests/unittests/test_network_with_dtype.py
+74
-0
未找到文件。
python/paddle/fluid/executor.py
浏览文件 @
62c51e44
...
@@ -299,14 +299,18 @@ class Executor(object):
...
@@ -299,14 +299,18 @@ class Executor(object):
if
feed
is
None
:
if
feed
is
None
:
feed
=
{}
feed
=
{}
if
not
isinstance
(
feed
,
dict
):
if
not
isinstance
(
feed
,
dict
):
raise
TypeError
(
"feed should be a map"
)
raise
TypeError
(
"feed requires dict as its Parameter. But you passed in %s"
%
(
type
(
feed
)))
if
fetch_list
is
None
:
if
fetch_list
is
None
:
fetch_list
=
[]
fetch_list
=
[]
if
program
is
None
:
if
program
is
None
:
program
=
default_main_program
()
program
=
default_main_program
()
if
not
isinstance
(
program
,
Program
):
if
not
isinstance
(
program
,
Program
):
raise
TypeError
()
raise
TypeError
(
"Executor requires Program as its Parameter. But you passed in %s"
%
(
type
(
program
)))
if
scope
is
None
:
if
scope
is
None
:
scope
=
global_scope
()
scope
=
global_scope
()
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
62c51e44
...
@@ -47,6 +47,8 @@ class Optimizer(object):
...
@@ -47,6 +47,8 @@ class Optimizer(object):
raise
TypeError
(
"learning rate should be float or Variable"
)
raise
TypeError
(
"learning rate should be float or Variable"
)
self
.
regularization
=
regularization
self
.
regularization
=
regularization
self
.
_learning_rate
=
learning_rate
self
.
_learning_rate
=
learning_rate
# the learning rate type should be inferenced from loss
self
.
_dtype
=
None
# each program should have a independent learning rate
# each program should have a independent learning rate
# program -> Variable(learning_rate)
# program -> Variable(learning_rate)
self
.
_learning_rate_map
=
dict
()
self
.
_learning_rate_map
=
dict
()
...
@@ -77,7 +79,7 @@ class Optimizer(object):
...
@@ -77,7 +79,7 @@ class Optimizer(object):
name
=
unique_name
.
generate
(
"learning_rate"
),
name
=
unique_name
.
generate
(
"learning_rate"
),
shape
=
[
1
],
shape
=
[
1
],
value
=
float
(
self
.
_learning_rate
),
value
=
float
(
self
.
_learning_rate
),
dtype
=
'float32'
,
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
,
persistable
=
True
)
persistable
=
True
)
def
global_learning_rate
(
self
,
program
=
None
):
def
global_learning_rate
(
self
,
program
=
None
):
...
@@ -200,6 +202,7 @@ class Optimizer(object):
...
@@ -200,6 +202,7 @@ class Optimizer(object):
# Create any accumulators
# Create any accumulators
program
=
loss
.
block
.
program
program
=
loss
.
block
.
program
self
.
_dtype
=
loss
.
dtype
with
program_guard
(
program
,
startup_program
):
with
program_guard
(
program
,
startup_program
):
global_block
=
framework
.
default_main_program
().
global_block
()
global_block
=
framework
.
default_main_program
().
global_block
()
start
=
len
(
global_block
.
ops
)
start
=
len
(
global_block
.
ops
)
...
@@ -391,7 +394,7 @@ class AdamOptimizer(Optimizer):
...
@@ -391,7 +394,7 @@ class AdamOptimizer(Optimizer):
beta_shape
=
[
1
]
beta_shape
=
[
1
]
self
.
_beta1_pow_acc
=
self
.
helper
.
create_global_variable
(
self
.
_beta1_pow_acc
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
'beta1_pow_acc'
),
name
=
unique_name
.
generate
(
'beta1_pow_acc'
),
dtype
=
'float32'
,
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
,
shape
=
beta_shape
,
shape
=
beta_shape
,
lod_level
=
0
,
lod_level
=
0
,
persistable
=
True
)
persistable
=
True
)
...
@@ -400,7 +403,7 @@ class AdamOptimizer(Optimizer):
...
@@ -400,7 +403,7 @@ class AdamOptimizer(Optimizer):
self
.
_beta2_pow_acc
=
self
.
helper
.
create_global_variable
(
self
.
_beta2_pow_acc
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
'beta2_pow_acc'
),
name
=
unique_name
.
generate
(
'beta2_pow_acc'
),
dtype
=
'float32'
,
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
,
shape
=
beta_shape
,
shape
=
beta_shape
,
lod_level
=
0
,
lod_level
=
0
,
persistable
=
True
)
persistable
=
True
)
...
@@ -493,7 +496,7 @@ class AdamaxOptimizer(Optimizer):
...
@@ -493,7 +496,7 @@ class AdamaxOptimizer(Optimizer):
beta_shape
=
[
1
]
beta_shape
=
[
1
]
self
.
_beta1_pow_acc
=
self
.
helper
.
create_global_variable
(
self
.
_beta1_pow_acc
=
self
.
helper
.
create_global_variable
(
name
=
unique_name
.
generate
(
'beta1_pow_acc'
),
name
=
unique_name
.
generate
(
'beta1_pow_acc'
),
dtype
=
'float32'
,
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
,
shape
=
beta_shape
,
shape
=
beta_shape
,
lod_level
=
0
,
lod_level
=
0
,
persistable
=
True
)
persistable
=
True
)
...
@@ -900,8 +903,10 @@ class ModelAverage(Optimizer):
...
@@ -900,8 +903,10 @@ class ModelAverage(Optimizer):
# param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
# param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
tmp
=
layers
.
sum
(
x
=
[
num_accumulates
,
old_num_accumulates
])
tmp
=
layers
.
sum
(
x
=
[
num_accumulates
,
old_num_accumulates
])
sum
=
layers
.
sum
(
x
=
[
sum_1
,
sum_2
,
sum_3
])
sum
=
layers
.
sum
(
x
=
[
sum_1
,
sum_2
,
sum_3
])
tmp
=
layers
.
cast
(
x
=
tmp
,
dtype
=
'float32'
)
tmp
=
layers
.
cast
(
sum
=
layers
.
cast
(
x
=
sum
,
dtype
=
'float32'
)
x
=
tmp
,
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
)
sum
=
layers
.
cast
(
x
=
sum
,
dtype
=
'float32'
if
self
.
_dtype
==
None
else
self
.
_dtype
)
layers
.
elementwise_div
(
x
=
sum
,
y
=
tmp
,
out
=
param
)
layers
.
elementwise_div
(
x
=
sum
,
y
=
tmp
,
out
=
param
)
def
_add_average_restore_op
(
self
,
block
,
param_grad
):
def
_add_average_restore_op
(
self
,
block
,
param_grad
):
...
...
python/paddle/fluid/tests/unittests/test_network_with_dtype.py
0 → 100644
浏览文件 @
62c51e44
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.executor
import
Executor
BATCH_SIZE
=
20
class
TestNetWithDtype
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
"float64"
self
.
init_dtype
()
self
.
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
13
],
dtype
=
self
.
dtype
)
self
.
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
self
.
dtype
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
self
.
x
,
size
=
1
,
act
=
None
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
self
.
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
fetch_list
=
[
avg_cost
]
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
avg_cost
)
def
run_net_on_place
(
self
,
place
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
train
(),
batch_size
=
BATCH_SIZE
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
self
.
x
,
self
.
y
])
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
data
in
train_reader
():
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
self
.
fetch_list
)
# the main program is runable, the datatype is fully supported
break
def
init_dtype
(
self
):
pass
def
test_cpu
(
self
):
place
=
fluid
.
CPUPlace
()
self
.
run_net_on_place
(
place
)
def
test_gpu
(
self
):
if
not
core
.
is_compiled_with_cuda
():
return
place
=
fluid
.
CUDAPlace
(
0
)
self
.
run_net_on_place
(
place
)
# TODO(dzhwinter): make sure the fp16 is runable
# class TestFloat16(SimpleNet):
# def init_dtype(self):
# self.dtype = "float16"
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录