Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
624caee5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
624caee5
编写于
5月 16, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into fix_fetch_op_handle
上级
e383ea20
9707aa6b
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
529 addition
and
316 deletion
+529
-316
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+6
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+36
-0
paddle/fluid/framework/details/execution_strategy.h
paddle/fluid/framework/details/execution_strategy.h
+29
-0
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+23
-24
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+6
-6
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+8
-9
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+6
-5
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+7
-10
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+20
-17
paddle/fluid/inference/analysis/device.h
paddle/fluid/inference/analysis/device.h
+1
-0
paddle/fluid/inference/analysis/node.h
paddle/fluid/inference/analysis/node.h
+1
-0
paddle/fluid/operators/load_combine_op.cc
paddle/fluid/operators/load_combine_op.cc
+26
-10
paddle/fluid/operators/save_load_combine_op_test.cc
paddle/fluid/operators/save_load_combine_op_test.cc
+87
-3
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+1
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+55
-17
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+29
-27
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+13
-7
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+43
-34
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+8
-12
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+36
-37
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+36
-36
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
.../book/high-level-api/word2vec/no_test_word2vec_new_api.py
+9
-11
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+37
-24
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+6
-26
未找到文件。
cmake/inference_lib.cmake
浏览文件 @
624caee5
...
...
@@ -70,6 +70,12 @@ copy(glog_lib
DSTS
${
dst_dir
}
${
dst_dir
}
/lib
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/boost/"
)
copy
(
boost_lib
SRCS
${
BOOST_INCLUDE_DIR
}
/boost
DSTS
${
dst_dir
}
)
if
(
NOT PROTOBUF_FOUND
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/third_party/install/protobuf"
)
copy
(
protobuf_lib
...
...
paddle/fluid/framework/details/build_strategy.h
0 → 100644
浏览文件 @
624caee5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
BuildStrategy
{
enum
class
ReduceStrategy
{
kAllReduce
=
0
,
kReduce
=
1
};
enum
class
GradientScaleStrategy
{
kCoeffNumDevice
=
0
,
kOne
=
1
,
kCustomized
=
2
,
};
ReduceStrategy
reduce_
{
ReduceStrategy
::
kAllReduce
};
GradientScaleStrategy
gradient_scale_
{
GradientScaleStrategy
::
kCoeffNumDevice
};
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/execution_strategy.h
0 → 100644
浏览文件 @
624caee5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
ExecutionStrategy
{
size_t
num_threads_
{
0
};
bool
use_event_
{
true
};
bool
allow_op_delay_
{
false
};
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
624caee5
...
...
@@ -37,31 +37,26 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
)
platform
::
NCCLContextMap
*
nccl_ctxs
,
const
BuildStrategy
&
strategy
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
),
nccl_ctxs_
(
nccl_ctxs
),
balance_parameter_opt_between_cards_
(
balance_parameter_opt_between_cards
)
{
strategy_
(
strategy
)
{
#else
MultiDevSSAGraphBuilder
::
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
)
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
BuildStrategy
&
strategy
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
),
balance_parameter_opt_between_cards_
(
balance_parameter_opt_between_cards
)
{
strategy_
(
strategy
)
{
#endif
for
(
auto
&
p
:
params
)
{
grad_names_
.
insert
(
GradVarName
(
p
));
}
use_default_grad_scale_
=
use_default_grad_scale
;
}
void
MultiDevSSAGraphBuilder
::
CreateOpHandleIOs
(
SSAGraph
*
result
,
...
...
@@ -146,7 +141,8 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
CreateComputationalOps
(
&
result
,
*
op
,
1
);
}
else
if
(
IsScaleLossOp
(
*
op
))
{
// user can customize loss@grad if not use_default_grad_scale_
if
(
use_default_grad_scale_
)
{
if
(
strategy_
.
gradient_scale_
!=
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
)
{
CreateScaleLossGradOp
(
&
result
);
}
is_forwarding
=
false
;
...
...
@@ -165,19 +161,22 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
// broadcast, and each gradient is only broadcast once.
for
(
auto
&
og
:
op
->
OutputArgumentNames
())
{
if
(
IsParameterGradientOnce
(
og
,
&
og_has_been_broadcast
))
{
if
(
balance_parameter_opt_between_cards_
)
{
CreateReduceOp
(
&
result
,
og
,
cur_device_id
);
var_name_on_devices
[
cur_device_id
].
emplace
(
og
);
bcast_var_name_set
[
cur_device_id
].
emplace
(
og
.
substr
(
0
,
og
.
size
()
-
strlen
(
kGradVarSuffix
)));
cur_device_id
=
(
cur_device_id
+
1
)
%
places_
.
size
();
}
else
{
if
(
IsSparseGradient
(
var_types
,
og
))
{
CreateReduceOp
(
&
result
,
og
,
0
);
CreateBroadcastOp
(
&
result
,
og
,
0
);
}
else
{
InsertNCCLAllReduceOp
(
&
result
,
og
);
}
switch
(
strategy_
.
reduce_
)
{
case
BuildStrategy
::
ReduceStrategy
::
kReduce
:
CreateReduceOp
(
&
result
,
og
,
cur_device_id
);
var_name_on_devices
[
cur_device_id
].
emplace
(
og
);
bcast_var_name_set
[
cur_device_id
].
emplace
(
og
.
substr
(
0
,
og
.
size
()
-
strlen
(
kGradVarSuffix
)));
cur_device_id
=
(
cur_device_id
+
1
)
%
places_
.
size
();
break
;
case
BuildStrategy
::
ReduceStrategy
::
kAllReduce
:
if
(
IsSparseGradient
(
var_types
,
og
))
{
CreateReduceOp
(
&
result
,
og
,
0
);
CreateBroadcastOp
(
&
result
,
og
,
0
);
}
else
{
InsertNCCLAllReduceOp
(
&
result
,
og
);
}
break
;
}
}
}
...
...
@@ -303,7 +302,7 @@ bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
int
MultiDevSSAGraphBuilder
::
GetOpDeviceID
(
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
var_name_on_devices
,
const
OpDesc
&
op
)
const
{
if
(
!
balance_parameter_opt_between_cards_
)
{
if
(
strategy_
.
reduce_
!=
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
return
-
1
;
}
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
624caee5
...
...
@@ -17,6 +17,7 @@
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
namespace
paddle
{
...
...
@@ -36,15 +37,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
);
const
BuildStrategy
&
strategy
);
#else
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
);
const
BuildStrategy
&
strategy
);
#endif
std
::
unique_ptr
<
SSAGraph
>
Build
(
const
ProgramDesc
&
program
)
const
override
;
...
...
@@ -62,8 +61,6 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
#ifdef PADDLE_WITH_CUDA
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
bool
balance_parameter_opt_between_cards_
;
bool
use_default_grad_scale_
;
bool
IsScaleLossOp
(
const
OpDesc
&
op
)
const
;
...
...
@@ -105,6 +102,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
bool
IsSparseGradient
(
const
std
::
unordered_map
<
std
::
string
,
proto
::
VarType
::
Type
>
&
var_types
,
const
std
::
string
&
og
)
const
;
private:
BuildStrategy
strategy_
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
624caee5
...
...
@@ -18,18 +18,17 @@ namespace paddle {
namespace
framework
{
namespace
details
{
ThreadedSSAGraphExecutor
::
ThreadedSSAGraphExecutor
(
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
SSAGraph
>
&&
graph
,
bool
allow_op_delay
)
std
::
unique_ptr
<
SSAGraph
>
&&
graph
)
:
SSAGraphExecutor
(
std
::
move
(
graph
)),
pool_
(
num_threads
>=
2
?
new
::
ThreadPool
(
num_threads
)
:
nullptr
),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
local_scopes_
(
local_scopes
),
places_
(
places
),
fetch_ctxs_
(
places
),
use_event_
(
use_event
),
running_ops_
(
0
),
allow_op_delay_
(
allow_op_dela
y
)
{}
strategy_
(
strateg
y
)
{}
FeedFetchList
ThreadedSSAGraphExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
...
...
@@ -86,7 +85,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
//
// NOTE: DelayedOps have a lower priority. It will be scheduled after all
// ready_ops have been performed.
if
(
ready_ops
.
empty
()
&&
allow_op_delay_
&&
running_ops_
==
0
)
{
if
(
ready_ops
.
empty
()
&&
strategy_
.
allow_op_delay_
&&
running_ops_
==
0
)
{
run_all_ops
(
delayed_ops
);
}
else
{
run_all_ops
(
ready_ops
);
...
...
@@ -113,7 +112,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto
&
deps
=
pending_ops
[
op
];
--
deps
;
if
(
deps
==
0
)
{
if
(
op
->
IsMultiDeviceTransfer
()
&&
allow_op_delay_
)
{
if
(
op
->
IsMultiDeviceTransfer
()
&&
strategy_
.
allow_op_delay_
)
{
delayed_ops
.
insert
(
op
);
}
else
{
ready_ops
.
insert
(
op
);
...
...
@@ -191,7 +190,7 @@ void ThreadedSSAGraphExecutor::RunOp(
auto
op_run
=
[
ready_var_q
,
op
,
this
]
{
try
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
op
->
Run
(
use_event_
);
op
->
Run
(
strategy_
.
use_event_
);
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
running_ops_
--
;
ready_var_q
->
Extend
(
op
->
Outputs
());
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
624caee5
...
...
@@ -23,6 +23,7 @@
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
...
...
@@ -34,11 +35,10 @@ namespace details {
class
ThreadedSSAGraphExecutor
:
public
SSAGraphExecutor
{
public:
ThreadedSSAGraphExecutor
(
size_t
num_threads
,
bool
use_event
,
ThreadedSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
std
::
unique_ptr
<
SSAGraph
>
&&
graph
,
bool
allow_op_delay
);
std
::
unique_ptr
<
SSAGraph
>
&&
graph
);
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
...
...
@@ -55,10 +55,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
platform
::
DeviceContextPool
fetch_ctxs_
;
const
bool
use_event_
;
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
std
::
atomic
<
int
>
running_ops_
;
bool
allow_op_delay_
;
void
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
;
...
...
@@ -74,6 +72,9 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
std
::
unordered_set
<
VarHandleBase
*>
*
pending_vars
,
BlockingQueue
<
VarHandleBase
*>
*
ready_vars
,
FeedFetchList
*
fetch_data
);
private:
ExecutionStrategy
strategy_
;
};
}
// namespace details
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
624caee5
...
...
@@ -52,13 +52,12 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
}
ParallelExecutor
::
ParallelExecutor
(
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
,
size_t
trainer_id
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
...
...
@@ -100,18 +99,16 @@ ParallelExecutor::ParallelExecutor(
#ifdef PADDLE_WITH_CUDA
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
nccl_ctxs_
.
get
(),
use_default_grad_scale
,
balance_parameter_opt_between_cards
);
member_
->
nccl_ctxs_
.
get
(),
build_strategy
);
#else
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
);
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
build_strategy
);
#endif
auto
graph
=
builder
.
Build
(
main_program
);
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
num_threads
,
use_event
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
),
allow_op_delay
));
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
// Step 3. Create vars in each scope;
for
(
auto
*
var
:
main_program
.
Block
(
0
).
AllVars
())
{
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
624caee5
...
...
@@ -14,57 +14,60 @@ limitations under the License. */
#pragma once
#include <paddle/fluid/framework/details/build_strategy.h>
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
class
ParallelExecutorPrivate
;
using
details
::
BuildStrategy
;
using
details
::
ExecutionStrategy
;
class
ParallelExecutor
{
DISABLE_COPY_AND_ASSIGN
(
ParallelExecutor
);
public:
explicit
ParallelExecutor
(
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
platform
::
Place
>&
places
,
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
std
::
unordered_set
<
std
::
string
>&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
size_t
num_trainers
=
1
,
size_t
trainer_id
=
0
);
~
ParallelExecutor
();
std
::
vector
<
Scope
*>&
GetLocalScopes
();
std
::
vector
<
Scope
*>
&
GetLocalScopes
();
/**
* Feed tensors to local scopes. The size of tensors should be equal to the
* size of local scopes.
*/
void
FeedTensorsIntoLocalScopes
(
const
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
LoDTensor
>>
&
tensors
);
const
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
LoDTensor
>>
&
tensors
);
void
FeedAndSplitTensorIntoLocalScopes
(
const
std
::
unordered_map
<
std
::
string
,
LoDTensor
>
&
tensors
);
const
std
::
unordered_map
<
std
::
string
,
LoDTensor
>
&
tensors
);
void
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
);
void
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
const
std
::
string
&
fetched_var_name
);
void
BCastParamsToGPUs
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
void
BCastParamsToGPUs
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
private:
ParallelExecutorPrivate
*
member_
;
ParallelExecutorPrivate
*
member_
;
};
}
// namespace framework
...
...
paddle/fluid/inference/analysis/device.h
浏览文件 @
624caee5
...
...
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
paddle
{
namespace
inference
{
...
...
paddle/fluid/inference/analysis/node.h
浏览文件 @
624caee5
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
*/
#pragma once
#include <limits>
#include <memory>
#include <string>
#include <unordered_map>
...
...
paddle/fluid/operators/load_combine_op.cc
浏览文件 @
624caee5
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
...
...
@@ -31,6 +31,7 @@ class LoadCombineOp : public framework::OperatorBase {
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
filename
=
Attr
<
std
::
string
>
(
"file_path"
);
auto
load_as_fp16
=
Attr
<
bool
>
(
"load_as_fp16"
);
std
::
ifstream
fin
(
filename
);
PADDLE_ENFORCE
(
static_cast
<
bool
>
(
fin
),
...
...
@@ -59,17 +60,25 @@ class LoadCombineOp : public framework::OperatorBase {
// Get data from fin to tensor
DeserializeFromStream
(
fin
,
tensor
,
dev_ctx
);
if
(
platform
::
is_gpu_place
(
place
))
{
// copy CPU to GPU
framework
::
LoDTensor
cpu_tensor
;
cpu_tensor
.
ShareDataWith
(
*
tensor
);
cpu_tensor
.
set_lod
(
tensor
->
lod
());
// reset tensor
auto
in_dtype
=
framework
::
ToDataType
(
tensor
->
type
());
auto
out_dtype
=
load_as_fp16
?
framework
::
proto
::
VarType
::
FP16
:
in_dtype
;
if
(
in_dtype
!=
out_dtype
)
{
// convert to float16 tensor
auto
in_kernel_type
=
framework
::
OpKernelType
(
in_dtype
,
place
);
auto
out_kernel_type
=
framework
::
OpKernelType
(
out_dtype
,
place
);
framework
::
LoDTensor
fp16_tensor
;
// copy LoD info to the new tensor
fp16_tensor
.
set_lod
(
tensor
->
lod
());
framework
::
TransDataType
(
in_kernel_type
,
out_kernel_type
,
*
tensor
,
&
fp16_tensor
);
// reset output tensor
out_var
->
Clear
();
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
set_lod
(
cpu
_tensor
.
lod
());
TensorCopy
(
cpu_tensor
,
place
,
dev_ctx
,
tensor
);
tensor
->
set_lod
(
fp16
_tensor
.
lod
());
tensor
->
ShareDataWith
(
fp16_
tensor
);
}
}
}
...
...
@@ -82,6 +91,13 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"Out"
,
"(vector) The output LoDTensors that will be read from the input file."
)
.
AsDuplicable
();
AddAttr
<
bool
>
(
"load_as_fp16"
,
"(boolean, default false)"
"If true, the tensor will be first loaded and then "
"converted to float16 data type. Otherwise, the tensor will be "
"directly loaded without data type conversion."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"file_path"
,
"(string) "
"LoDTensors will be loaded from
\"
file_path
\"
."
)
...
...
paddle/fluid/operators/save_load_combine_op_test.cc
浏览文件 @
624caee5
...
...
@@ -139,8 +139,9 @@ TEST(SaveLoadCombineOp, CPU) {
CheckValues
<
int
,
int
>
(
expect4
,
actual4
,
expect_lod4
,
actual_lod4
,
numel4
);
}
// FP16 version of SaveLoadCombineOp Test
TEST
(
SaveLoadCombineFP16Op
,
CPU
)
{
// FP16 version of SaveLoadCombineOp Test, only altering the saving aspect
// to save as FP16.
TEST
(
SaveCombineFP16Op
,
CPU
)
{
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUPlace
place
;
...
...
@@ -169,7 +170,7 @@ TEST(SaveLoadCombineFP16Op, CPU) {
20
,
50
,
lod4
,
"test_var4"
,
place
,
&
scope
,
&
expect_lod4
);
// Set attributes
std
::
string
filename
=
"check_tensor_fp16.ls"
;
std
::
string
filename
=
"check_tensor_fp16
_save
.ls"
;
paddle
::
framework
::
AttributeMap
attrs
;
attrs
.
insert
({
"file_path"
,
std
::
string
(
filename
)});
attrs
.
insert
({
"save_as_fp16"
,
true
});
...
...
@@ -216,6 +217,89 @@ TEST(SaveLoadCombineFP16Op, CPU) {
actual_lod4
,
numel4
);
}
// FP16 version of SaveLoadCombineOp Test, only altering the loading aspect
// to load tensors with FP16 precision.
TEST
(
LoadCombineFP16Op
,
CPU
)
{
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUPlace
place
;
std
::
vector
<
int
>
lod1
=
{
0
,
1
,
2
,
3
,
10
};
int
numel1
=
100
;
paddle
::
framework
::
LoD
expect_lod1
;
float
*
expect1
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
10
,
10
,
lod1
,
"test_var1"
,
place
,
&
scope
,
&
expect_lod1
);
std
::
vector
<
int
>
lod2
=
{
0
,
2
,
5
,
10
};
int
numel2
=
200
;
paddle
::
framework
::
LoD
expect_lod2
;
float
*
expect2
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
10
,
20
,
lod2
,
"test_var2"
,
place
,
&
scope
,
&
expect_lod2
);
std
::
vector
<
int
>
lod3
=
{
0
,
20
};
int
numel3
=
4000
;
paddle
::
framework
::
LoD
expect_lod3
;
float
*
expect3
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
20
,
200
,
lod3
,
"test_var3"
,
place
,
&
scope
,
&
expect_lod3
);
std
::
vector
<
int
>
lod4
=
{
0
,
1
,
20
};
int
numel4
=
1000
;
paddle
::
framework
::
LoD
expect_lod4
;
float
*
expect4
=
CreateForSaveCombineOp
<
float
,
paddle
::
platform
::
float16
>
(
20
,
50
,
lod4
,
"test_var4"
,
place
,
&
scope
,
&
expect_lod4
);
// Set attributes
std
::
string
filename
=
"check_tensor_fp16_load.ls"
;
paddle
::
framework
::
AttributeMap
attrs
;
attrs
.
insert
({
"file_path"
,
std
::
string
(
filename
)});
// Run the save_combine_op
auto
save_combine_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"save_combine"
,
{{
"X"
,
{
"test_var1"
,
"test_var2"
,
"test_var3"
,
"test_var4"
}}},
{},
attrs
);
save_combine_op
->
Run
(
scope
,
place
);
// Set up output vars
auto
load_var1
=
scope
.
Var
(
"out_var1"
);
auto
load_var2
=
scope
.
Var
(
"out_var2"
);
auto
load_var3
=
scope
.
Var
(
"out_var3"
);
auto
load_var4
=
scope
.
Var
(
"out_var4"
);
attrs
.
insert
({
"load_as_fp16"
,
true
});
// Run the load_combine_op
auto
load_combine_op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
"load_combine"
,
{},
{{
"Out"
,
{
"out_var1"
,
"out_var2"
,
"out_var3"
,
"out_var4"
}}},
attrs
);
load_combine_op
->
Run
(
scope
,
place
);
auto
*
target1
=
load_var1
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
auto
*
target2
=
load_var2
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
auto
*
target3
=
load_var3
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
auto
*
target4
=
load_var4
->
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
paddle
::
framework
::
LoD
actual_lod1
,
actual_lod2
,
actual_lod3
,
actual_lod4
;
paddle
::
platform
::
float16
*
actual1
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target1
,
scope
,
&
actual_lod1
);
paddle
::
platform
::
float16
*
actual2
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target2
,
scope
,
&
actual_lod2
);
paddle
::
platform
::
float16
*
actual3
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target3
,
scope
,
&
actual_lod3
);
paddle
::
platform
::
float16
*
actual4
=
GetValuesAfterLoadCombineOp
<
paddle
::
platform
::
float16
>
(
target4
,
scope
,
&
actual_lod4
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect1
,
actual1
,
expect_lod1
,
actual_lod1
,
numel1
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect2
,
actual2
,
expect_lod2
,
actual_lod2
,
numel2
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect3
,
actual3
,
expect_lod3
,
actual_lod3
,
numel3
);
CheckValues
<
float
,
paddle
::
platform
::
float16
>
(
expect4
,
actual4
,
expect_lod4
,
actual_lod4
,
numel4
);
}
// Test with original SaveLoadTest
TEST
(
SaveLoadTestWithCombineOp
,
CPU
)
{
paddle
::
framework
::
Scope
scope
;
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
624caee5
...
...
@@ -53,7 +53,7 @@ class NCCLGroupGuard {
}
inline
~
NCCLGroupGuard
()
{
PADDLE_ENFORCE
(
dynload
::
ncclGroupEnd
()
);
CHECK_EQ
(
dynload
::
ncclGroupEnd
(),
ncclSuccess
);
NCCLMutex
().
unlock
();
}
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
624caee5
...
...
@@ -494,23 +494,61 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"disable_profiler"
,
platform
::
DisableProfiler
);
m
.
def
(
"reset_profiler"
,
platform
::
ResetProfiler
);
py
::
class_
<
ParallelExecutor
>
(
m
,
"ParallelExecutor"
)
.
def
(
"__init__"
,
[](
ParallelExecutor
&
self
,
size_t
num_threads
,
bool
use_event
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
size_t
num_trainers
,
size_t
trainer_id
)
{
new
(
&
self
)
ParallelExecutor
(
num_threads
,
use_event
,
places
,
params
,
bcast_vars
,
main_program
,
loss_var_name
,
scope
,
local_scopes
,
allow_op_delay
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
,
num_trainers
,
trainer_id
);
})
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
(
pe
,
"ExecutionStrategy"
)
.
def
(
py
::
init
())
.
def_property
(
"num_threads"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
num_threads_
;
},
[](
ExecutionStrategy
&
self
,
size_t
num_threads
)
{
self
.
num_threads_
=
num_threads
;
})
.
def_property
(
"use_event"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
use_event_
;
},
[](
ExecutionStrategy
&
self
,
bool
use_event
)
{
self
.
use_event_
=
use_event
;
})
.
def_property
(
"allow_op_delay"
,
[](
const
ExecutionStrategy
&
self
)
{
return
self
.
allow_op_delay_
;
},
[](
ExecutionStrategy
&
self
,
bool
allow_op_delay
)
{
self
.
allow_op_delay_
=
allow_op_delay
;
});
py
::
class_
<
BuildStrategy
>
build_strategy
(
pe
,
"BuildStrategy"
);
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
.
value
(
"Reduce"
,
BuildStrategy
::
ReduceStrategy
::
kReduce
)
.
value
(
"AllReduce"
,
BuildStrategy
::
ReduceStrategy
::
kAllReduce
);
py
::
enum_
<
BuildStrategy
::
GradientScaleStrategy
>
(
build_strategy
,
"GradientScaleStrategy"
)
.
value
(
"CoeffNumDevice"
,
BuildStrategy
::
GradientScaleStrategy
::
kCoeffNumDevice
)
.
value
(
"One"
,
BuildStrategy
::
GradientScaleStrategy
::
kOne
)
.
value
(
"Customized"
,
BuildStrategy
::
GradientScaleStrategy
::
kCustomized
);
build_strategy
.
def
(
py
::
init
())
.
def_property
(
"reduce_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
reduce_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
ReduceStrategy
strategy
)
{
self
.
reduce_
=
strategy
;
})
.
def_property
(
"gradient_scale_strategy"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
gradient_scale_
;
},
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
self
.
gradient_scale_
=
strategy
;
});
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
ProgramDesc
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&
,
size_t
,
size_t
>
())
.
def
(
"bcast_params"
,
&
ParallelExecutor
::
BCastParamsToGPUs
)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
...
...
python/paddle/fluid/__init__.py
浏览文件 @
624caee5
...
...
@@ -44,42 +44,44 @@ import transpiler
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
from
transpiler
import
DistributeTranspiler
,
SimpleDistributeTranspiler
,
InferenceTranspiler
,
memory_optimize
,
release_memory
from
transpiler
import
DistributeTranspiler
,
SimpleDistributeTranspiler
,
\
InferenceTranspiler
,
memory_optimize
,
release_memory
from
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
channel_close
,
Select
)
import
clip
import
profiler
import
unique_name
import
recordio_writer
from
parallel_executor
import
ParallelExecutor
import
parallel_executor
from
parallel_executor
import
*
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
concurrency
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
[
'io'
,
'initializer
'
,
'layers
'
,
'transpiler'
'nets'
,
'optimizer
'
,
'learning_rate_decay
'
,
'backward
'
,
'regularizer
'
,
'LoDTenso
r'
,
'CPUPlace
'
,
'CUDA
Place'
,
'CUDAPinned
Place'
,
'Tensor
'
,
'ParamAtt
r'
,
'WeightNorm
ParamAttr'
,
'DataFeede
r'
,
'clip
'
,
'profiler
'
,
'unique_name
'
,
'recordio_writer
'
,
'ParallelExecuto
r'
,
]
__all__
=
framework
.
__all__
+
executor
.
__all__
+
concurrency
.
__all__
+
\
trainer
.
__all__
+
inferencer
.
__all__
+
transpiler
.
__all__
+
\
parallel_executor
.
__all__
+
[
'io
'
,
'initializer
'
,
'layers'
,
'transpiler'
'nets
'
,
'optimizer
'
,
'learning_rate_decay
'
,
'backward
'
,
'regularize
r'
,
'LoDTensor
'
,
'CPU
Place'
,
'CUDA
Place'
,
'CUDAPinnedPlace
'
,
'Tenso
r'
,
'
ParamAttr'
,
'WeightNormParamAtt
r'
,
'DataFeeder
'
,
'clip
'
,
'profiler
'
,
'unique_name
'
,
'recordio_write
r'
,
]
def
__bootstrap__
():
...
...
python/paddle/fluid/inferencer.py
浏览文件 @
624caee5
...
...
@@ -13,29 +13,35 @@
# limitations under the License.
import
core
import
framework
import
executor
import
framework
import
io
import
unique_name
from
trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
class
Inferencer
(
object
):
def
__init__
(
self
,
param_path
,
place
=
None
):
def
__init__
(
self
,
infer_func
,
param_path
,
place
=
None
):
"""
:param param_path: the path where the inference model is saved by fluid.io.save_inference_model
:param infer_func: a function that will return predict Variable
:param param_path: the path where the inference model is saved by fluid.io.save_params
:param place: place to do the inference
"""
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
inference_program
):
with
unique_name
.
guard
():
self
.
predict_var
=
infer_func
()
self
.
exe
=
executor
.
Executor
(
check_and_get_place
(
place
))
with
executor
.
scope_guard
(
self
.
scope
):
# load params from param_path into scope
[
self
.
inference_program
,
_
,
self
.
fetch_targets
]
=
io
.
load_inference_model
(
executor
=
self
.
exe
,
dirname
=
param_path
)
io
.
load_params
(
self
.
exe
,
param_path
,
self
.
inference_program
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
...
...
@@ -51,7 +57,7 @@ class Inferencer(object):
with
executor
.
scope_guard
(
self
.
scope
):
results
=
self
.
exe
.
run
(
self
.
inference_program
,
feed
=
inputs
,
fetch_list
=
self
.
fetch_targets
,
fetch_list
=
[
self
.
predict_var
]
,
return_numpy
=
return_numpy
)
return
results
python/paddle/fluid/parallel_executor.py
浏览文件 @
624caee5
...
...
@@ -19,7 +19,10 @@ import executor
import
warnings
import
sys
__all__
=
[
'ParallelExecutor'
]
__all__
=
[
'ParallelExecutor'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
class
ParallelExecutor
(
object
):
...
...
@@ -27,13 +30,12 @@ class ParallelExecutor(object):
use_cuda
,
loss_name
=
None
,
main_program
=
None
,
num_threads
=
None
,
allow_op_delay
=
False
,
share_vars_from
=
None
,
use_default_grad_scale
=
Tru
e
,
b
alance_parameter_opt_between_cards
=
Fals
e
,
exec_strategy
=
Non
e
,
b
uild_strategy
=
Non
e
,
num_trainers
=
1
,
trainer_id
=
0
):
trainer_id
=
0
,
**
kwargs
):
"""
ParallelExecutor can run program in parallel.
...
...
@@ -42,21 +44,8 @@ class ParallelExecutor(object):
loss_name(str, default None): The loss name must set in training.
main_program(Program, default None): The program that need to run,
if not provided, then default_main_program will be used.
num_threads(int, default None): How many threads are used for
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, default False.
share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor.
use_default_grad_scale(bool, default True): If set True, a default
scale value equal to `1./device_count` would be multiplied to
gradients of each device and scaled gradients would be
aggregated. Otherwise, a customized scale value should be fed
to the network.
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
num_trainers(int, default 1): If greater than 1, NCCL will be
initialized with multpile rank of nodes, each node should have
same number of GPUs. Distributed training will be enabled then.
...
...
@@ -83,6 +72,25 @@ class ParallelExecutor(object):
train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict)
"""
if
len
(
kwargs
)
!=
0
:
err_msg
=
""
for
key
in
kwargs
:
if
key
in
dir
(
ExecutionStrategy
):
err_msg
+=
\
"Setting {0} by constructor is deprecated. Use "
\
"strategy=ExecutionStrategy(); strategy.{0}=xxx; "
\
"pe=ParallelExecutor(exec_strategy=strategy) "
\
"instead.
\n
"
.
format
(
key
)
elif
key
in
dir
(
BuildStrategy
):
err_msg
+=
\
"Setting {0} by constructor is deprecated. Use "
\
"strategy=BuildStrategy(); See help("
\
"paddle.fluid.ParallelExecutor.BuildStrategy)
\n
"
.
format
(
key
)
else
:
err_msg
+=
"Setting {0} by constructor is deprecated. Use strategy.
\n
"
.
format
(
key
)
raise
ValueError
(
err_msg
)
self
.
_places
=
[]
self
.
_act_places
=
[]
...
...
@@ -100,15 +108,25 @@ class ParallelExecutor(object):
self
.
_places
.
append
(
p
)
assert
self
.
_places
,
"no place for execution"
if
num_threads
is
None
:
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
if
use_cuda
:
exec_strategy
.
use_event
=
True
else
:
exec_strategy
.
use_event
=
False
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
num_threads
=
len
(
self
.
_places
)
*
2
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
2
else
:
num_threads
=
min
(
exec_strategy
.
num_threads
=
min
(
len
(
self
.
_places
)
*
2
,
multiprocessing
.
cpu_count
())
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
main
=
main_program
main
=
main
if
main
else
framework
.
default_main_program
()
scope
=
executor
.
global_scope
()
...
...
@@ -127,23 +145,14 @@ class ParallelExecutor(object):
]
self
.
executor
=
core
.
ParallelExecutor
(
num_threads
,
True
if
use_cuda
else
False
,
# use_event
self
.
_places
,
set
([
p
.
name
for
p
in
main
.
global_block
().
iter_parameters
()
if
not
p
.
stop_gradient
]),
set
(
self
.
persistable_vars
),
main
.
desc
,
loss_name
if
loss_name
else
''
,
scope
,
local_scopes
,
allow_op_delay
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
,
num_trainers
,
trainer_id
)
set
(
self
.
persistable_vars
),
main
.
desc
,
loss_name
if
loss_name
else
''
,
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
num_trainers
,
trainer_id
)
self
.
scope
=
scope
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
):
...
...
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
624caee5
...
...
@@ -48,12 +48,11 @@ def linear():
return
avg_loss
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
trainer
=
fluid
.
Trainer
(
train_func
=
linear
,
infer_func
=
inference_program
,
train_func
=
train_program
,
place
=
place
,
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
))
...
...
@@ -72,11 +71,7 @@ def train(use_cuda, save_dirname):
'''
if
float
(
test_metrics
[
0
])
<
20.0
:
if
save_dirname
is
not
None
:
# NOT clear yet
# fluid.io.save_inference_model(save_dirname, ['x'], [y_predict])
# trainer.save_params(save_dirname)
# https://github.com/PaddlePaddle/Paddle/pull/10445
trainer
.
save_inference_model
(
save_dirname
)
trainer
.
save_params
(
save_dirname
)
return
trainer
.
train
(
...
...
@@ -87,12 +82,13 @@ def train(use_cuda, save_dirname):
# infer
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
10
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
...
...
@@ -108,8 +104,8 @@ def main(use_cuda):
# Directory for saving the trained model
save_dirname
=
"fit_a_line.inference.model"
train
(
use_cuda
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
train
(
use_cuda
,
linear
,
save_dirname
)
infer
(
use_cuda
,
inference_program
,
save_dirname
)
class
TestFitALine
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
624caee5
...
...
@@ -53,48 +53,40 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
# trainer.save_params(save_dirname)
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -108,10 +100,11 @@ def train(use_cuda, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -126,8 +119,14 @@ def main(use_cuda):
save_dirname
=
"recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
624caee5
...
...
@@ -40,47 +40,40 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
def
train
(
use_cuda
,
save_dirname
):
def
train
(
use_cuda
,
train_program
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
)
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -94,10 +87,11 @@ def train(use_cuda, save_dirname):
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
def
infer
(
use_cuda
,
inference_program
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -112,8 +106,14 @@ def main(use_cuda):
save_dirname
=
"recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train
train
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
save_dirname
=
save_dirname
)
train
(
use_cuda
=
use_cuda
,
train_program
=
train_program
,
save_dirname
=
save_dirname
)
infer
(
use_cuda
=
use_cuda
,
inference_program
=
inference_program
,
save_dirname
=
save_dirname
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
浏览文件 @
624caee5
...
...
@@ -90,7 +90,7 @@ def train_program(is_sparse):
return
avg_cost
def
train
(
use_cuda
,
is_sparse
,
save_path
):
def
train
(
use_cuda
,
train_program
,
save_path
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
...
...
@@ -105,23 +105,21 @@ def train(use_cuda, is_sparse, save_path):
print
(
"loss= "
,
avg_cost
)
if
avg_cost
<
5.0
:
trainer
.
save_
inference_model
(
save_path
)
trainer
.
save_
params
(
save_path
)
return
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
partial
(
train_program
,
is_sparse
),
partial
(
inference_program
,
is_sparse
),
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
train_program
,
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
i
s_sparse
,
save_path
):
def
infer
(
use_cuda
,
i
nference_program
,
save_path
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_path
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
infer_func
=
inference_program
,
param_path
=
save_path
,
place
=
place
)
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
...
...
@@ -144,9 +142,9 @@ def main(use_cuda, is_sparse):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"word2vec.
inference.model
"
train
(
use_cuda
,
is_sparse
,
save_path
)
infer
(
use_cuda
,
is_sparse
,
save_path
)
save_path
=
"word2vec.
params
"
train
(
use_cuda
,
partial
(
train_program
,
is_sparse
)
,
save_path
)
infer
(
use_cuda
,
partial
(
inference_program
,
is_sparse
)
,
save_path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
浏览文件 @
624caee5
...
...
@@ -232,14 +232,18 @@ class TestParallelExecutorBase(unittest.TestCase):
place
=
fluid
.
CUDAPlace
(
0
)
startup_exe
=
fluid
.
Executor
(
place
)
startup_exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
if
balance_parameter_opt_between_cards
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
loss
.
name
,
allow_op_delay
=
allow_op_delay
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
exec_strategy
=
exec_strategy
,
build_strategy
=
build_strategy
)
else
:
exe
=
fluid
.
Executor
(
place
=
place
)
...
...
@@ -548,7 +552,7 @@ class TestTransformer(TestParallelExecutorBase):
class
ParallelExecutorTestingDuringTraining
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
b
alance_parameter_opt_between_cards
):
def
check_network_convergence
(
self
,
b
uild_strategy
=
None
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -571,15 +575,13 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
build_strategy
=
build_strategy
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
build_strategy
=
build_strategy
)
for
i
in
xrange
(
5
):
test_loss
,
=
test_exe
.
run
([
loss
.
name
],
feed
=
feed_dict
)
...
...
@@ -594,10 +596,14 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
str
(
test_loss
))
def
test_parallel_testing
(
self
):
self
.
check_network_convergence
(
False
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
build_strategy
)
def
test_parallel_testing_with_new_strategy
(
self
):
self
.
check_network_convergence
(
True
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
build_strategy
)
import
paddle.dataset.conll05
as
conll05
...
...
@@ -617,7 +623,7 @@ embedding_name = 'emb'
def
db_lstm
(
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
is_sparse
,
balance_parameter_opt_between_cards
,
**
ignored
):
is_sparse
,
**
ignored
):
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
...
...
@@ -686,9 +692,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class
TestCRFModel
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
is_sparse
,
balance_parameter_opt_between_cards
=
False
):
def
check_network_convergence
(
self
,
is_sparse
,
build_strategy
=
None
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -739,8 +743,7 @@ class TestCRFModel(unittest.TestCase):
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
build_strategy
=
build_strategy
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
...
...
@@ -756,19 +759,29 @@ class TestCRFModel(unittest.TestCase):
pe
.
run
(
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
]))[
0
]
def
test_update_sparse_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
True
)
def
test_update_sparse_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
build_strategy
)
def
test_update_dense_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
False
)
def
test_update_dense_parameter_all_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
build_strategy
)
def
test_update_sparse_parameter_with_new_strategy
(
self
):
def
test_update_sparse_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
is_sparse
=
True
,
b
alance_parameter_opt_between_cards
=
True
)
is_sparse
=
True
,
b
uild_strategy
=
build_strategy
)
def
test_update_dense_parameter_with_new_strategy
(
self
):
def
test_update_dense_parameter_reduce
(
self
):
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
self
.
check_network_convergence
(
is_sparse
=
False
,
b
alance_parameter_opt_between_cards
=
True
)
is_sparse
=
False
,
b
uild_strategy
=
build_strategy
)
# test fetch all the variables of global_block
...
...
python/paddle/fluid/trainer.py
浏览文件 @
624caee5
...
...
@@ -92,19 +92,13 @@ class Trainer(object):
place: The device place of this trainer.
"""
def
__init__
(
self
,
train_func
,
infer_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
def
__init__
(
self
,
train_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
self
.
infer_func
=
infer_func
self
.
scope
=
core
.
Scope
()
self
.
startup_program
=
framework
.
Program
()
...
...
@@ -178,9 +172,9 @@ class Trainer(object):
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
parallel
=
False
,
feed_order
=
Non
e
):
reader
,
feed_order
,
parallel
=
Fals
e
):
"""
Train the model.
...
...
@@ -208,7 +202,7 @@ class Trainer(object):
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
,
feed_order
=
None
):
def
test
(
self
,
reader
,
feed_order
):
"""
Test the model on given test data
...
...
@@ -226,15 +220,6 @@ class Trainer(object):
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
def
save_inference_model
(
self
,
model_path
):
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
inference_program
):
with
unique_name
.
guard
():
predict_var
=
self
.
infer_func
()
predict_var
=
self
.
train_program
.
block
(
0
).
var
(
predict_var
.
name
)
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_inference_model
(
model_path
,
[],
[
predict_var
],
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
...
...
@@ -291,12 +276,7 @@ def build_feed_var_list(program, feed_order):
if
not
isinstance
(
program
,
framework
.
Program
):
raise
TypeError
(
"The 'program' should be an object of Program"
)
if
feed_order
is
None
:
feed_var_list
=
[
var
for
var
in
program
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
]
elif
isinstance
(
feed_order
,
list
):
if
isinstance
(
feed_order
,
list
):
feed_var_list
=
[
program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录