Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
61cc3ae4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
61cc3ae4
编写于
9月 28, 2017
作者:
Y
Yu Yang
提交者:
zchen0211
9月 28, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Stablize elementwise_mul by using double precision
上级
78808b20
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
78 addition
and
45 deletion
+78
-45
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+7
-9
paddle/pybind/tensor_py.h
paddle/pybind/tensor_py.h
+14
-1
python/paddle/v2/framework/tests/op_test.py
python/paddle/v2/framework/tests/op_test.py
+42
-18
python/paddle/v2/framework/tests/test_elementwise_mul_op.py
python/paddle/v2/framework/tests/test_elementwise_mul_op.py
+15
-17
未找到文件。
paddle/pybind/pybind.cc
浏览文件 @
61cc3ae4
...
...
@@ -77,20 +77,18 @@ PYBIND11_PLUGIN(core) {
})
.
def
(
"set"
,
PyCPUTensorSetFromArray
<
float
>
)
.
def
(
"set"
,
PyCPUTensorSetFromArray
<
int
>
)
.
def
(
"set"
,
PyCPUTensorSetFromArray
<
double
>
)
#ifndef PADDLE_ONLY_CPU
.
def
(
"set"
,
PyCUDATensorSetFromArray
<
float
>
)
.
def
(
"set"
,
PyCUDATensorSetFromArray
<
int
>
)
.
def
(
"set"
,
PyCUDATensorSetFromArray
<
double
>
)
#endif
.
def
(
"shape"
,
[](
Tensor
&
self
)
{
return
vectorize
(
self
.
dims
());
})
.
def
(
"set_float_element"
,
[](
Tensor
&
self
,
size_t
offset
,
float
f
)
{
// TODO(yuyang18): Only support GPU now.
self
.
data
<
float
>
()[
offset
]
=
f
;
})
.
def
(
"get_float_element"
,
[](
Tensor
&
self
,
size_t
offset
)
->
float
{
// TODO(yuyang18): Only support GPU now.
return
self
.
data
<
float
>
()[
offset
];
});
.
def
(
"set_float_element"
,
TensorSetElement
<
float
>
)
.
def
(
"get_float_element"
,
TensorGetElement
<
float
>
)
.
def
(
"set_double_element"
,
TensorSetElement
<
double
>
)
.
def
(
"get_double_element"
,
TensorGetElement
<
double
>
)
.
def
(
"dtype"
,
[](
Tensor
&
self
)
{
return
ToDataType
(
self
.
type
());
});
py
::
class_
<
LoDTensor
,
Tensor
>
(
m
,
"LoDTensor"
)
.
def_buffer
(
...
...
paddle/pybind/tensor_py.h
浏览文件 @
61cc3ae4
...
...
@@ -73,10 +73,23 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
};
}
// namespace details
inline
py
::
buffer_info
CastToPyBuffer
(
framework
::
Tensor
&
tensor
)
{
auto
buffer_info
=
details
::
CastToPyBufferImpl
<
true
,
0
,
float
,
int
>
()(
tensor
);
auto
buffer_info
=
details
::
CastToPyBufferImpl
<
true
,
0
,
float
,
int
,
double
>
()(
tensor
);
return
buffer_info
;
}
template
<
typename
T
>
T
TensorGetElement
(
framework
::
Tensor
&
self
,
size_t
offset
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
self
.
place
()));
return
self
.
data
<
T
>
()[
offset
];
}
template
<
typename
T
>
void
TensorSetElement
(
framework
::
Tensor
&
self
,
size_t
offset
,
T
elem
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
self
.
place
()));
self
.
data
<
T
>
()[
offset
]
=
elem
;
}
template
<
typename
T
>
void
PyCPUTensorSetFromArray
(
framework
::
Tensor
&
self
,
...
...
python/paddle/v2/framework/tests/op_test.py
浏览文件 @
61cc3ae4
...
...
@@ -69,24 +69,27 @@ def set_input(scope, op, inputs, place):
def
set_output_grad
(
scope
,
op
,
outputs
,
place
):
def
__set_tensor__
(
name
):
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
out_dtype
=
out_tensor
.
dtype
()
if
out_dtype
==
core
.
DataType
.
FP64
:
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float64
)
elif
out_dtype
==
core
.
DataType
.
FP32
:
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float32
)
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
out_dtype
))
grad_tensor
.
set
(
data
,
place
)
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
op
.
type
()):
if
out_name
in
outputs
:
if
out_dup
:
sub_out
=
outputs
[
out_name
]
for
sub_out_name
,
_
in
sub_out
:
out_tensor
=
scope
.
find_var
(
sub_out_name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
sub_out_name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float32
)
grad_tensor
.
set
(
data
,
place
)
__set_tensor__
(
sub_out_name
)
else
:
out_tensor
=
scope
.
find_var
(
out_name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
out_name
)).
get_tensor
(
)
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float32
)
grad_tensor
.
set
(
data
,
place
)
__set_tensor__
(
out_name
)
def
get_numeric_gradient
(
scope
,
...
...
@@ -96,7 +99,6 @@ def get_numeric_gradient(scope,
output_names
,
delta
=
0.005
,
in_place
=
False
):
set_input
(
scope
,
op
,
inputs
,
core
.
CPUPlace
())
tensor_to_check
=
scope
.
find_var
(
input_to_check
).
get_tensor
()
...
...
@@ -115,7 +117,29 @@ def get_numeric_gradient(scope,
tensor_to_check
=
scope
.
find_var
(
input_to_check
).
get_tensor
()
tensor_size
=
product
(
tensor_to_check
.
get_dims
())
gradient_flat
=
np
.
zeros
(
shape
=
(
tensor_size
,
),
dtype
=
'float32'
)
tensor_to_check_dtype
=
tensor_to_check
.
dtype
()
if
tensor_to_check_dtype
==
core
.
DataType
.
FP32
:
tensor_to_check_dtype
=
np
.
float32
elif
tensor_to_check_dtype
==
core
.
DataType
.
FP64
:
tensor_to_check_dtype
=
np
.
float64
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
tensor_to_check_dtype
))
gradient_flat
=
np
.
zeros
(
shape
=
(
tensor_size
,
),
dtype
=
tensor_to_check_dtype
)
def
__get_elem__
(
tensor
,
i
):
if
tensor_to_check_dtype
==
np
.
float32
:
return
tensor
.
get_float_element
(
i
)
else
:
return
tensor
.
get_double_element
(
i
)
def
__set_elem__
(
tensor
,
i
,
e
):
if
tensor_to_check_dtype
==
np
.
float32
:
tensor
.
set_float_element
(
i
,
e
)
else
:
tensor
.
set_double_element
(
i
,
e
)
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for
i
in
xrange
(
tensor_size
):
...
...
@@ -123,20 +147,20 @@ def get_numeric_gradient(scope,
set_input
(
scope
,
op
,
inputs
,
core
.
CPUPlace
())
# get one input element throw it's index i.
origin
=
tensor_to_check
.
get_float_element
(
i
)
origin
=
__get_elem__
(
tensor_to_check
,
i
)
# add delta to it, run op and then get the sum of the result tensor.
x_pos
=
origin
+
delta
tensor_to_check
.
set_float_element
(
i
,
x_pos
)
__set_elem__
(
tensor_to_check
,
i
,
x_pos
)
y_pos
=
get_output
()
if
in_place
:
set_input
(
scope
,
op
,
inputs
,
core
.
CPUPlace
())
x_neg
=
origin
-
delta
tensor_to_check
.
set_float_element
(
i
,
x_neg
)
__set_elem__
(
tensor_to_check
,
i
,
x_neg
)
y_neg
=
get_output
()
tensor_to_check
.
set_float_element
(
i
,
origin
)
__set_elem__
(
tensor_to_check
,
i
,
origin
)
gradient_flat
[
i
]
=
(
y_pos
-
y_neg
)
/
delta
/
2
return
gradient_flat
.
reshape
(
tensor_to_check
.
get_dims
())
...
...
python/paddle/v2/framework/tests/test_elementwise_mul_op.py
浏览文件 @
61cc3ae4
...
...
@@ -7,8 +7,8 @@ class ElementwiseMulOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float
32
"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float
32
"
)
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float
64
"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float
64
"
)
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
...
...
@@ -16,23 +16,21 @@ class ElementwiseMulOp(OpTest):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.1
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.1
,
no_grad_set
=
set
(
"X"
))
self
.
check_grad
([
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.1
,
no_grad_set
=
set
(
'Y'
))
self
.
check_grad
([
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
))
class
TestElementwiseMulOp_Vector
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
)).
astype
(
"float
32
"
),
'Y'
:
np
.
random
.
random
((
32
,
)).
astype
(
"float
32
"
)
'X'
:
np
.
random
.
random
((
32
,
)).
astype
(
"float
64
"
),
'Y'
:
np
.
random
.
random
((
32
,
)).
astype
(
"float
64
"
)
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
...
...
@@ -41,8 +39,8 @@ class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float
32
),
'Y'
:
np
.
random
.
rand
(
2
).
astype
(
np
.
float
32
)
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float
64
),
'Y'
:
np
.
random
.
rand
(
2
).
astype
(
np
.
float
64
)
}
self
.
attrs
=
{
'axis'
:
0
}
...
...
@@ -55,8 +53,8 @@ class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float
32
),
'Y'
:
np
.
random
.
rand
(
3
).
astype
(
np
.
float
32
)
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float
64
),
'Y'
:
np
.
random
.
rand
(
3
).
astype
(
np
.
float
64
)
}
self
.
attrs
=
{
'axis'
:
1
}
...
...
@@ -69,8 +67,8 @@ class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float
32
),
'Y'
:
np
.
random
.
rand
(
4
).
astype
(
np
.
float
32
)
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float
64
),
'Y'
:
np
.
random
.
rand
(
4
).
astype
(
np
.
float
64
)
}
self
.
outputs
=
{
...
...
@@ -82,8 +80,8 @@ class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
np
.
float
32
),
'Y'
:
np
.
random
.
rand
(
3
,
4
).
astype
(
np
.
float
32
)
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
np
.
float
64
),
'Y'
:
np
.
random
.
rand
(
3
,
4
).
astype
(
np
.
float
64
)
}
self
.
attrs
=
{
'axis'
:
1
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录