Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
61403f87
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
61403f87
编写于
8月 26, 2019
作者:
W
wozna
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add transpose2 INT8 for mkl-dnn
test=develop
上级
08fa98f7
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
297 addition
and
71 deletion
+297
-71
cmake/operators.cmake
cmake/operators.cmake
+4
-1
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+21
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+15
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
+60
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
+2
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
+106
-46
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
+3
-0
paddle/fluid/inference/tests/api/analyzer_int8_object_detection_tester.cc
...erence/tests/api/analyzer_int8_object_detection_tester.cc
+1
-1
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
+36
-9
paddle/fluid/operators/transpose_op.cc
paddle/fluid/operators/transpose_op.cc
+27
-4
paddle/fluid/operators/transpose_op.h
paddle/fluid/operators/transpose_op.h
+2
-0
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+20
-10
未找到文件。
cmake/operators.cmake
浏览文件 @
61403f87
...
...
@@ -174,7 +174,10 @@ function(op_library TARGET)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN, FP32);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN, S8);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN, U8);
\n
"
)
elseif
(
${
MKLDNN_FILE
}
STREQUAL
"transpose_mkldnn_op"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN, FP32);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN, S8);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN, U8);
\n
"
)
else
()
file
(
APPEND
${
pybind_file
}
"USE_OP_DEVICE_KERNEL(
${
TARGET
}
, MKLDNN);
\n
"
)
endif
()
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
61403f87
...
...
@@ -1155,6 +1155,27 @@ PDNode *patterns::Conv::operator()() {
return
output_var
;
}
PDNode
*
patterns
::
Transpose
::
operator
()()
{
auto
prev_op
=
pattern
->
NewNode
(
prev_op_repr
())
->
assert_is_op
();
auto
transpose_op
=
pattern
->
NewNode
(
transpose_op_repr
())
->
assert_is_op
(
"transpose2"
);
auto
transpose_in
=
pattern
->
NewNode
(
transpose_in_repr
())
->
AsInput
()
->
assert_is_op_input
(
"transpose2"
);
auto
transpose_out
=
pattern
->
NewNode
(
transpose_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"transpose2"
,
"Out"
);
auto
next_op
=
pattern
->
NewNode
(
next_op_repr
())
->
assert_is_op
();
prev_op
->
LinksTo
({
transpose_in
});
transpose_op
->
LinksFrom
({
transpose_in
}).
LinksTo
({
transpose_out
});
next_op
->
LinksFrom
({
transpose_out
});
return
transpose_out
;
}
PDNode
*
patterns
::
ConvResidual
::
operator
()(
bool
with_residual_data
)
{
auto
conv_op
=
pattern
->
NewNode
(
conv_op_repr
())
->
assert_is_op
(
"conv2d"
);
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
61403f87
...
...
@@ -750,6 +750,21 @@ struct ElementwiseAdd : public PatternBase {
PATTERN_DECL_NODE
(
elementwise_add_out
);
};
// Transpose op
// Forward pass for transpose.
// transpose_out is a result of the operator.
struct
Transpose
:
public
PatternBase
{
Transpose
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"transpose2"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
prev_op
);
PATTERN_DECL_NODE
(
transpose_in
);
PATTERN_DECL_NODE
(
transpose_op
);
PATTERN_DECL_NODE
(
transpose_out
);
PATTERN_DECL_NODE
(
next_op
);
};
// Concat op
// Forward pass for concat.
// concat_out is a result of the operator.
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
浏览文件 @
61403f87
...
...
@@ -343,6 +343,65 @@ void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
quantize_prior_box_count
);
}
void
CPUQuantizePass
::
QuantizeTranspose
(
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Transpose
transpose_pattern
{
pattern
,
name_scope_
};
transpose_pattern
();
int
quantize_transpose_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize transpose op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_op
,
transpose_op
,
transpose_pattern
);
auto
*
transpose_op_desc
=
transpose_op
->
Op
();
if
(
!
transpose_op_desc
->
HasAttr
(
"use_quantizer"
))
{
return
;
}
// skip if should not be quantized
if
(
!
transpose_op_desc
->
HasAttr
(
"use_quantizer"
)
||
!
boost
::
get
<
bool
>
(
transpose_op_desc
->
GetAttr
(
"use_quantizer"
)))
{
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
prev_op
,
prev_op
,
transpose_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
next_op
,
next_op
,
transpose_pattern
);
// skip if prev op is not quantized
// in future we should checked if next_op is quantized
// transpose INT8 schould be used only between INT8 operators
if
(
!
(
prev_op
->
Op
()
->
Type
()
==
"dequantize"
||
(
prev_op
->
Op
()
->
HasAttr
(
"use_quantizer"
)
&&
boost
::
get
<
bool
>
(
prev_op
->
Op
()
->
GetAttr
(
"use_quantizer"
)))))
{
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_in
,
transpose_in
,
transpose_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_out
,
transpose_out
,
transpose_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
transpose_in
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
transpose_in
->
Name
()].
first
;
QuantizeInput
(
g
,
transpose_op
,
transpose_in
,
"X"
,
input_scale
,
is_input_unsigned
);
auto
output_scale
=
scales
[
transpose_out
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_output_unsigned
=
scales
[
transpose_out
->
Name
()].
first
;
DequantizeOutput
(
g
,
transpose_op
,
transpose_out
,
"Out"
,
output_scale
,
is_output_unsigned
);
++
quantize_transpose_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_transpose_count
);
PrettyLogDetail
(
"--- quantized %d transpose ops"
,
quantize_transpose_count
);
}
void
CPUQuantizePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Quantizing the graph."
;
PADDLE_ENFORCE
(
graph
);
...
...
@@ -355,6 +414,7 @@ void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
QuantizePool
(
graph
);
QuantizeConcat
(
graph
);
QuantizePriorBox
(
graph
);
QuantizeTranspose
(
graph
);
}
}
// namespace ir
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
浏览文件 @
61403f87
...
...
@@ -52,6 +52,8 @@ class CPUQuantizePass : public FusePassBase {
void
QuantizePriorBox
(
Graph
*
graph
)
const
;
void
QuantizeTranspose
(
Graph
*
graph
)
const
;
void
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
浏览文件 @
61403f87
...
...
@@ -48,7 +48,7 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
op
->
SetAttr
(
"Scale_in"
,
1.0
f
);
op
->
SetAttr
(
"Scale_out"
,
1.0
f
);
op
->
SetAttr
(
"Scale_weights"
,
std
::
vector
<
float
>
{
1.0
f
});
}
else
if
(
type
==
"pool2d"
)
{
}
else
if
(
type
==
"pool2d"
||
type
==
"transpose2"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
...
...
@@ -113,19 +113,14 @@ void InitTensorHolder(Scope* scope, const paddle::platform::Place& place,
tensor
->
mutable_data
(
place
,
proto
::
VarType
::
FP32
,
1
);
}
void
MainTest
(
const
ProgramDesc
&
prog
,
int
conv_count
,
int
pool_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
,
float
scale
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
// Init scope, as it is used in pass
void
PreparePass
(
std
::
unique_ptr
<
ir
::
Graph
>*
graph
,
const
ProgramDesc
&
prog
,
const
std
::
initializer_list
<
std
::
string
>
variable_names
,
int
*
original_nodes_num
,
int
*
current_nodes_num
)
{
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
auto
*
scales
=
new
VarQuantScale
();
for
(
auto
&
v
:
variable_names
)
{
InitTensorHolder
(
&
scope
,
place
,
v
.
c_str
());
LoDTensor
tensor
;
...
...
@@ -136,16 +131,23 @@ void MainTest(const ProgramDesc& prog, int conv_count, int pool_count,
(
*
scales
)[
v
]
=
std
::
make_pair
(
false
,
std
::
move
(
tensor
));
}
graph
->
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_quantize_pass"
);
(
*
graph
)
->
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
std
::
unique_ptr
<
Pass
>
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_quantize_pass"
);
pass
->
Set
(
"quant_var_scales"
,
scales
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
*
original_nodes_num
=
(
*
graph
)
->
Nodes
().
size
();
(
*
graph
).
reset
(
pass
->
Apply
((
*
graph
).
release
()));
*
current_nodes_num
=
(
*
graph
)
->
Nodes
().
size
();
}
int
current_nodes_num
=
graph
->
Nodes
().
size
();
void
MainTest
(
const
ProgramDesc
&
prog
,
int
conv_count
,
int
pool_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
,
float
scale
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
original_nodes_num
,
current_nodes_num
;
PreparePass
(
&
graph
,
prog
,
variable_names
,
&
original_nodes_num
,
&
current_nodes_num
);
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
...
...
@@ -232,35 +234,9 @@ ProgramDesc BuildProgramDescConcat() {
void
MainTestConcat
(
const
ProgramDesc
&
prog
,
int
pool_count
,
int
concat_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
// Init scope, as it is used in pass
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
exe
.
CreateVariables
(
prog
,
0
,
true
,
&
scope
);
auto
*
scales
=
new
VarQuantScale
();
for
(
auto
&
v
:
variable_names_concat
)
{
InitTensorHolder
(
&
scope
,
place
,
v
.
c_str
());
LoDTensor
tensor
;
tensor
.
Resize
({
1
});
auto
*
ptr
=
tensor
.
mutable_data
<
double
>
(
place
);
ptr
[
0
]
=
2.0
;
(
*
scales
)[
v
]
=
std
::
make_pair
(
false
,
std
::
move
(
tensor
));
}
graph
->
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"cpu_quantize_pass"
);
pass
->
Set
(
"quant_var_scales"
,
scales
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
int
original_nodes_num
,
current_nodes_num
;
PreparePass
(
&
graph
,
prog
,
variable_names_concat
,
&
original_nodes_num
,
&
current_nodes_num
);
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
...
...
@@ -300,9 +276,93 @@ TEST(CpuQuantizePass, concat) {
MainTestConcat
(
BuildProgramDescConcat
(),
pool_count
,
concat_count
,
quant_count
,
dequant_count
,
added_nodes_count
);
}
}
// namespace
namespace
{
static
const
std
::
initializer_list
<
std
::
string
>
variable_names_transpose
=
{
"a"
,
"w1"
,
"b"
,
"c"
,
"w2"
,
"d"
,
"e"
,
"f"
};
// a->Conv1->b
// b->Transpose1->c
// c->Conv2->d
// d->Transpose2->e
// e->Dropout->f
ProgramDesc
BuildProgramDescTranspose
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names_transpose
)
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
if
(
v
.
find
(
"w"
)
==
0
)
{
var
->
SetPersistable
(
true
);
}
}
SetOp
(
&
prog
,
"conv2d"
,
"Conv1"
,
{
"a"
,
"w1"
},
{
"b"
},
true
,
true
);
SetOp
(
&
prog
,
"transpose2"
,
"Transpose1"
,
{
"b"
},
{
"c"
},
true
,
true
);
SetOp
(
&
prog
,
"conv2d"
,
"Conv1"
,
{
"c"
,
"w2"
},
{
"d"
},
true
,
true
);
SetOp
(
&
prog
,
"transpose2"
,
"Transpose2"
,
{
"d"
},
{
"e"
},
true
,
true
);
SetOp
(
&
prog
,
"dropout"
,
"Dropout"
,
{
"e"
},
{
"f"
},
true
,
false
);
return
prog
;
}
void
MainTestTranspose
(
const
ProgramDesc
&
prog
,
int
conv_count
,
int
transpose_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
,
float
scale
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
original_nodes_num
,
current_nodes_num
;
PreparePass
(
&
graph
,
prog
,
variable_names_transpose
,
&
original_nodes_num
,
&
current_nodes_num
);
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
int
transpose_nodes_count
=
0
;
int
conv_nodes_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"transpose2"
)
{
transpose_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"conv2d"
)
{
conv_nodes_count
++
;
auto
op_name
=
boost
::
get
<
std
::
string
>
(
op
->
GetAttr
(
"name"
));
EXPECT_EQ
(
boost
::
get
<
float
>
(
op
->
GetAttr
(
"Scale_in"
)),
scale
)
<<
"Scale_in for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
boost
::
get
<
float
>
(
op
->
GetAttr
(
"Scale_out"
)),
scale
)
<<
"Scale_out for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
boost
::
get
<
std
::
vector
<
float
>>
(
op
->
GetAttr
(
"Scale_weights"
))[
0
],
scale
)
<<
"Scale_weights for node '"
+
op_name
+
"'."
;
}
else
if
(
op
->
Type
()
==
"quantize"
)
{
quantize_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"dequantize"
)
{
dequantize_nodes_count
++
;
}
}
}
EXPECT_EQ
(
transpose_nodes_count
,
transpose_count
);
EXPECT_EQ
(
conv_nodes_count
,
conv_count
);
EXPECT_EQ
(
quantize_nodes_count
,
quant_count
);
EXPECT_EQ
(
dequantize_nodes_count
,
dequant_count
);
EXPECT_EQ
(
original_nodes_num
+
added_nodes_count
,
current_nodes_num
);
}
TEST
(
CpuQuantizePass
,
transpose
)
{
// a1->Quant->a2->Conv1->b1->Dequant->b2
// b2->Quant->b3->Transpose->c1->Dequant->c2
// c2->Quant->c3->Conv2->d1->Dequant->d2
// d2->Quant->d3->Transpose->e1->Dequant->e2
// e2->Dropout->f
int
conv_count
=
2
;
int
transpose_count
=
2
;
int
quant_count
=
4
;
int
dequant_count
=
4
;
// 4 Quant + 4 IN + 4 DeQuant + 4 OUT
int
added_nodes_count
=
16
;
MainTestTranspose
(
BuildProgramDescTranspose
(),
conv_count
,
transpose_count
,
quant_count
,
dequant_count
,
added_nodes_count
,
2.0
f
*
127
);
}
}
// namespace
}
// namespace ir
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
浏览文件 @
61403f87
...
...
@@ -34,6 +34,9 @@ MkldnnQuantizerConfig::MkldnnQuantizerConfig() {
rules_
[
"prior_box"
][
"Image"
]
=
ScaleAlgo
::
NONE
;
rules_
[
"prior_box"
][
"Boxes"
]
=
ScaleAlgo
::
NONE
;
rules_
[
"prior_box"
][
"Variances"
]
=
ScaleAlgo
::
NONE
;
rules_
[
"transpose"
][
"X"
]
=
ScaleAlgo
::
KL
;
rules_
[
"transpose"
][
"Out"
]
=
ScaleAlgo
::
KL
;
}
ScaleAlgo
MkldnnQuantizerConfig
::
scale_algo
(
...
...
paddle/fluid/inference/tests/api/analyzer_int8_object_detection_tester.cc
浏览文件 @
61403f87
...
...
@@ -268,7 +268,7 @@ TEST(Analyzer_int8_mobilenet_ssd, quantization) {
q_cfg
.
EnableMkldnnQuantizer
();
q_cfg
.
mkldnn_quantizer_config
();
std
::
unordered_set
<
std
::
string
>
quantize_operators
(
{
"conv2d"
,
"depthwise_conv2d"
,
"prior_box"
});
{
"conv2d"
,
"depthwise_conv2d"
,
"prior_box"
,
"transpose2"
});
q_cfg
.
mkldnn_quantizer_config
()
->
SetEnabledOpTypes
(
quantize_operators
);
q_cfg
.
mkldnn_quantizer_config
()
->
SetWarmupData
(
warmup_data
);
q_cfg
.
mkldnn_quantizer_config
()
->
SetWarmupBatchSize
(
FLAGS_warmup_batch_size
);
...
...
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
浏览文件 @
61403f87
...
...
@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
...
...
@@ -29,6 +30,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
mkldnn
::
memory
::
data_type
in_type
=
platform
::
MKLDNNGetDataType
<
T
>
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -49,8 +51,8 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
nchw_tz
,
axis
,
ctx
.
op
().
Output
(
"Out"
)
+
std
::
to_string
(
input
->
format
()));
platform
::
TransposeMKLDNNHandler
handler
(
nchw_tz
,
axis
,
dev_ctx
,
mkldnn_engine
,
key
);
platform
::
TransposeMKLDNNHandler
handler
(
nchw_tz
,
axis
,
input
->
type
(),
in_type
,
dev_ctx
,
mkldnn_engine
,
key
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
->
format
(),
platform
::
to_void_cast
<
T
>
(
input_data
));
...
...
@@ -78,7 +80,7 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
!
x_grad
)
return
;
mkldnn
::
memory
::
data_type
in_type
=
platform
::
MKLDNNGetDataType
<
T
>
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -103,7 +105,8 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
const
std
::
string
key
=
platform
::
TransposeMKLDNNHandler
::
GetHash
(
nchw_tz
,
axis
,
ctx
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
platform
::
TransposeMKLDNNHandler
handler
(
nchw_tz
,
reversed_axis
,
dev_ctx
,
platform
::
TransposeMKLDNNHandler
handler
(
nchw_tz
,
reversed_axis
,
x_grad
->
type
(),
in_type
,
dev_ctx
,
mkldnn_engine
,
key
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
...
...
@@ -124,11 +127,35 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
transpose2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
TransposeMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
transpose
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
TransposeMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
transpose2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kTransposeMKLDNNFP32
,
ops
::
TransposeMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
transpose2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
U8
,
ops
::
kTransposeMKLDNNINT8
,
ops
::
TransposeMKLDNNOpKernel
<
uint8_t
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
transpose2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
S8
,
ops
::
kTransposeMKLDNNINT8
,
ops
::
TransposeMKLDNNOpKernel
<
int8_t
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
transpose
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kTransposeMKLDNNFP32
,
ops
::
TransposeMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
transpose
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
U8
,
ops
::
kTransposeMKLDNNINT8
,
ops
::
TransposeMKLDNNOpKernel
<
uint8_t
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
transpose
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
S8
,
ops
::
kTransposeMKLDNNINT8
,
ops
::
TransposeMKLDNNOpKernel
<
int8_t
>
);
REGISTER_OP_KERNEL
(
transpose_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
TransposeMKLDNNGradOpKernel
<
float
>
);
...
...
paddle/fluid/operators/transpose_op.cc
浏览文件 @
61403f87
...
...
@@ -65,15 +65,23 @@ class TransposeOp : public framework::OperatorWithKernel {
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
int
customized_type_value
=
framework
::
OpKernelType
::
kDefaultCustomizedTypeValue
;
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
();
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
using
framework
::
proto
::
VarType
;
customized_type_value
=
(
input_data_type
==
VarType
::
INT8
||
input_data_type
==
VarType
::
UINT8
)
?
kTransposeMKLDNNINT8
:
kTransposeMKLDNNFP32
;
}
#endif
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()
,
ctx
.
GetPlace
(),
layout_
,
library_
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout_
,
library_
,
customized_type_value
);
}
};
...
...
@@ -99,6 +107,13 @@ class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
"Defaults to
\"
NHWC
\"
. Specify the data format of the output data, "
"the input will be transformed automatically. "
)
.
SetDefault
(
"AnyLayout"
);
/* int8 parameters */
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool, default false) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Transpose Operator.
...
...
@@ -196,16 +211,24 @@ class Transpose2Op : public TransposeOp {
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
int
customized_type_value
=
framework
::
OpKernelType
::
kDefaultCustomizedTypeValue
;
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
();
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
using
framework
::
proto
::
VarType
;
customized_type_value
=
(
input_data_type
==
VarType
::
INT8
||
input_data_type
==
VarType
::
UINT8
)
?
kTransposeMKLDNNINT8
:
kTransposeMKLDNNFP32
;
}
#endif
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()
,
ctx
.
GetPlace
(),
layout_
,
library_
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout_
,
library_
,
customized_type_value
);
}
};
...
...
paddle/fluid/operators/transpose_op.h
浏览文件 @
61403f87
...
...
@@ -21,6 +21,8 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
enum
{
kTransposeMKLDNNFP32
=
1
,
kTransposeMKLDNNINT8
=
2
};
template
<
typename
DeviceContext
,
typename
T
>
inline
void
TransCompute
(
const
int
dim
,
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
in
,
framework
::
Tensor
*
out
,
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
61403f87
...
...
@@ -828,12 +828,16 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
public:
TransposeMKLDNNHandler
(
std
::
vector
<
int
>&
dims
,
// NOLINT
std
::
vector
<
int
>&
axis
,
// NOLINT
framework
::
proto
::
VarType
::
Type
vtype
,
mkldnn
::
memory
::
data_type
dtype
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
),
dims_
(
dims
),
axis_
(
axis
),
logical_axis_
(
dims
.
size
(),
0
)
{}
logical_axis_
(
dims
.
size
(),
0
),
vtype_
(
vtype
),
dtype_
(
dtype
)
{}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
format
&
fmt
,
void
*
ptr
)
{
...
...
@@ -847,9 +851,8 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
logical_axis_
[
i
]
=
i
;
}
auto
src_md
=
fmt
!=
mkldnn
::
memory
::
format
::
nchw
?
platform
::
MKLDNNMemDesc
(
dims_
,
platform
::
MKLDNNGetDataType
<
float
>
(),
fmt
)
:
Axis2MemoryDesc
(
dims_
,
logical_axis_
);
?
platform
::
MKLDNNMemDesc
(
dims_
,
dtype_
,
fmt
)
:
Axis2MemoryDesc
(
dims_
,
logical_axis_
,
dtype_
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
src_md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
...
...
@@ -866,14 +869,14 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
auto
dst_mdp
=
mkldnn
::
memory
::
primitive_desc
{
Axis2MemoryDesc
(
dims_
,
axis_
),
engine_
};
Axis2MemoryDesc
(
dims_
,
axis_
,
dtype_
),
engine_
};
auto
dst_data
=
output
->
mutable_data
<
float
>
(
place
,
dst_mdp
.
get_size
()
);
auto
dst_data
=
output
->
mutable_data
(
place
,
vtype_
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
dst_mdp
,
dst_data
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
auto
dst_data
=
output
->
mutable_data
<
float
>
(
place
);
auto
dst_data
=
output
->
mutable_data
(
place
,
vtype_
);
mem_p
->
set_data_handle
(
dst_data
);
}
return
mem_p
;
...
...
@@ -901,8 +904,8 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
protected:
mkldnn_memory_desc_t
Axis2MemoryDesc
(
std
::
vector
<
int
>&
nchw_tz
,
// NOLINT
std
::
vector
<
int
>&
axis
// NOLINT
)
{
std
::
vector
<
int
>&
axis
,
// NOLINT
mkldnn
::
memory
::
data_type
dtype
)
{
mkldnn_memory_desc_t
mem_fmt
;
mem_fmt
.
primitive_kind
=
mkldnn_memory
;
...
...
@@ -911,7 +914,12 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
mem_fmt
.
dims
[
i
]
=
nchw_tz
[
i
];
// logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt
.
data_type
=
mkldnn_f32
;
if
(
dtype
==
mkldnn
::
memory
::
data_type
::
s8
)
mem_fmt
.
data_type
=
mkldnn_s8
;
else
if
(
dtype
==
mkldnn
::
memory
::
data_type
::
u8
)
mem_fmt
.
data_type
=
mkldnn_u8
;
else
mem_fmt
.
data_type
=
mkldnn_f32
;
mem_fmt
.
format
=
mkldnn_blocked
;
unsigned
int
total_stride
=
1
;
...
...
@@ -933,6 +941,8 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
std
::
vector
<
int
>
dims_
;
std
::
vector
<
int
>
axis_
;
std
::
vector
<
int
>
logical_axis_
;
framework
::
proto
::
VarType
::
Type
vtype_
;
mkldnn
::
memory
::
data_type
dtype_
;
};
class
ReorderMKLDNNHandler
:
public
MKLDNNHandler
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录