提交 5fddd99e 编写于 作者: H hedaoyuan

move TEST from test_matrixCompare.cpp to cross_map_normal_op_test.cpp

上级 148bd4d0
...@@ -107,6 +107,7 @@ function(link_paddle_exe TARGET_NAME) ...@@ -107,6 +107,7 @@ function(link_paddle_exe TARGET_NAME)
paddle_parameter paddle_parameter
paddle_proto paddle_proto
paddle_cuda paddle_cuda
paddle_test_main
${METRIC_LIBS} ${METRIC_LIBS}
${PROTOBUF_LIBRARY} ${PROTOBUF_LIBRARY}
${LIBGLOG_LIBRARY} ${LIBGLOG_LIBRARY}
......
file(GLOB FUNCTION_HEADERS . *.h) file(GLOB h_files . *_op.h)
file(GLOB cpp_files . *_op.cpp)
if(NOT WITH_GPU)
file(GLOB FUNCTION_SOURCES . *.cpp) list(APPEND h_files Function.h)
add_library(paddle_function STATIC ${FUNCTION_SOURCES}) list(APPEND cpp_files Function.cpp)
else()
file(GLOB FUNCTION_SOURCES . *.cpp *.cu) if(WITH_GPU)
cuda_add_library(paddle_function ${FUNCTION_SOURCES}) file(GLOB cu_files . *_op_gpu.cu)
cuda_compile(cu_objs ${cu_files})
endif() endif()
add_style_check_target(paddle_function ${FUNCTION_SOURCES}) add_library(paddle_function STATIC ${cpp_files} ${cu_objs})
add_style_check_target(paddle_function ${FUNCTION_HEADERS})
add_library(paddle_test_main STATIC TestMain.cpp)
if(WITH_GPU)
# TODO:
# file(GLOB test_files . *_op_test.cpp)
# add_executable(${test_bin} EXCLUDE_FROM_ALL ${test_files})
add_simple_unittest(cross_map_normal_op_test)
endif()
add_style_check_target(paddle_function ${h_files})
add_style_check_target(paddle_function ${cpp_files})
if(WITH_GPU)
add_style_check_target(paddle_function ${cu_files})
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Function.h"
#include "paddle/math/Vector.h"
#include "paddle/math/tests/TensorCheck.h"
namespace paddle {
class FunctionCompare {
public:
FunctionCompare(const std::string& name, const FuncConfig& config)
: cpu(FunctionBase::funcRegistrar_.createByType(name + "-CPU")),
gpu(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) {
cpu->init(config);
gpu->init(config);
}
void cmpWithArg(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) {
// init cpu and gpu arguments
auto initArgs = [=](
Arguments& cpuArgs, Arguments& gpuArgs, const Arguments& inArgs) {
for (auto arg : inArgs) {
size_t size = sizeof(real);
for (auto dim : arg.dims_) {
size *= dim;
}
cpuMemory.emplace_back(std::make_shared<CpuMemoryHandle>(size));
gpuMemory.emplace_back(std::make_shared<GpuMemoryHandle>(size));
cpuArgs.emplace_back(
Tensor((real*)cpuMemory.back()->getBuf(), arg.dims_));
gpuArgs.emplace_back(
Tensor((real*)gpuMemory.back()->getBuf(), arg.dims_));
// will use an api to refactor this code.
CpuVector cpuVector(size / sizeof(real),
(real*)cpuArgs.back().getData());
GpuVector gpuVector(size / sizeof(real),
(real*)gpuArgs.back().getData());
cpuVector.uniform(0.001, 1);
gpuVector.copyFrom(cpuVector);
}
};
initArgs(cpuInputs, gpuInputs, inputs);
initArgs(cpuOutputs, gpuOutputs, outputs);
initArgs(cpuInouts, gpuInouts, inouts);
// function calculate
cpu->calc(cpuInputs, cpuOutputs, cpuInouts);
gpu->calc(gpuInputs, gpuOutputs, gpuInouts);
// check outputs and inouts
auto checkArgs = [=](const Arguments& cpuArgs, const Arguments& gpuArgs) {
for (size_t i = 0; i < cpuArgs.size(); i++) {
auto cpu = cpuArgs[i];
auto gpu = gpuArgs[i];
size_t size = 1;
for (auto dim : cpu.dims_) {
size *= dim;
}
CpuVector cpuVector(size, (real*)cpu.getData());
GpuVector gpuVector(size, (real*)gpu.getData());
autotest::TensorCheckErr(cpuVector, gpuVector);
}
};
checkArgs(cpuOutputs, gpuOutputs);
checkArgs(cpuInouts, gpuInouts);
}
protected:
std::shared_ptr<FunctionBase> cpu;
std::shared_ptr<FunctionBase> gpu;
std::vector<CpuMemHandlePtr> cpuMemory;
std::vector<GpuMemHandlePtr> gpuMemory;
Arguments cpuInputs;
Arguments cpuOutputs;
Arguments cpuInouts;
Arguments gpuInputs;
Arguments gpuOutputs;
Arguments gpuInouts;
};
} // namespace paddle
using paddle::FunctionCompare;
using paddle::FuncConfig;
using paddle::Dims;
using paddle::Tensor;
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/utils/Util.h"
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
paddle::initMain(argc, argv);
return RUN_ALL_TESTS();
}
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "FunctionTest.h"
TEST(CrossMapNormal, real) {
for (size_t numSamples : {5, 32}) {
for (size_t channels : {1, 5, 32}) {
for (size_t imgSizeH : {5, 33, 100}) {
for (size_t imgSizeW : {5, 32, 96}) {
for (size_t size : {1, 2, 3, 5, 7}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
<< " size=" << size;
FunctionCompare compare("CrossMapNormal",
FuncConfig()
.set("size", size)
.set("scale", (real)1.5)
.set("pow", (real)0.5));
Dims dims{numSamples, channels, imgSizeH, imgSizeW};
compare.cmpWithArg({Tensor(nullptr, dims)},
{Tensor(nullptr, dims), Tensor(nullptr, dims)},
{});
}
}
}
}
}
}
TEST(CrossMapNormalGrad, real) {
for (size_t numSamples : {5, 32}) {
for (size_t channels : {1, 5, 32}) {
for (size_t imgSizeH : {5, 33, 100}) {
for (size_t imgSizeW : {5, 32, 96}) {
for (size_t size : {1, 2, 3, 5, 7}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
<< " size=" << size;
FunctionCompare compare("CrossMapNormalGrad",
FuncConfig()
.set("size", size)
.set("scale", (real)1.5)
.set("pow", (real)0.5));
Dims dims{numSamples, channels, imgSizeH, imgSizeW};
compare.cmpWithArg({Tensor(nullptr, dims),
Tensor(nullptr, dims),
Tensor(nullptr, dims),
Tensor(nullptr, dims)},
{Tensor(nullptr, dims)},
{});
}
}
}
}
}
}
...@@ -1263,150 +1263,6 @@ TEST(Matrix, MaxOutFwdBwd) { ...@@ -1263,150 +1263,6 @@ TEST(Matrix, MaxOutFwdBwd) {
} }
} }
void testCrossMapNormalFwd(
int numSamples, int channels, int imgSizeH, int imgSizeW, int sizeX) {
float scale = 1.5;
float pow = 0.5;
int width = imgSizeH * imgSizeW * channels;
CpuMatrix inputs(numSamples, width);
CpuMatrix denoms(numSamples, width);
CpuMatrix outputs(numSamples, width);
GpuMatrix inputsGpu(numSamples, width);
GpuMatrix denomsGpu(numSamples, width);
GpuMatrix outputsGpu(numSamples, width);
inputs.randomizeUniform();
outputs.randomizeUniform();
inputsGpu.copyFrom(inputs);
outputsGpu.copyFrom(outputs);
FunctionBase* cpu =
FunctionBase::funcRegistrar_.createByType(FUNC_NAME(CrossMapNormal, CPU));
FunctionBase* gpu =
FunctionBase::funcRegistrar_.createByType(FUNC_NAME(CrossMapNormal, GPU));
cpu->init(FuncConfig()
.set("size", (size_t)sizeX)
.set("scale", scale)
.set("pow", pow));
gpu->init(FuncConfig()
.set("size", (size_t)sizeX)
.set("scale", scale)
.set("pow", pow));
Dims dims{
(size_t)numSamples, (size_t)channels, (size_t)imgSizeH, (size_t)imgSizeW};
cpu->calc({Tensor(inputs.getData(), dims)},
{Tensor(outputs.getData(), dims), Tensor(denoms.getData(), dims)},
{});
gpu->calc(
{Tensor(inputsGpu.getData(), dims)},
{Tensor(outputsGpu.getData(), dims), Tensor(denomsGpu.getData(), dims)},
{});
TensorCheckErr(outputs, outputsGpu);
TensorCheckErr(denoms, denomsGpu);
}
TEST(Matrix, crossMapNormalFwd) {
for (auto numSamples : {5, 32}) {
for (auto channels : {1, 5, 32}) {
for (auto imgSizeH : {5, 33, 100}) {
for (auto imgSizeW : {5, 32, 96}) {
for (auto sizeX : {1, 2, 3, 5, 7}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
<< " sizeX=" << sizeX;
testCrossMapNormalFwd(
numSamples, channels, imgSizeH, imgSizeW, sizeX);
}
}
}
}
}
}
void testCrossMapNormalBwd(
int numSamples, int channels, int imgSizeH, int imgSizeW, int sizeX) {
float scale = 1.5;
float pow = 0.5;
size_t width = imgSizeH * imgSizeW * channels;
CpuMatrix inputsGrad(numSamples, width);
CpuMatrix inputsValue(numSamples, width);
CpuMatrix outputsGrad(numSamples, width);
CpuMatrix outputsValue(numSamples, width);
CpuMatrix denoms(numSamples, width);
outputsGrad.randomizeUniform();
denoms.randomizeUniform();
inputsValue.randomizeUniform();
outputsValue.randomizeUniform();
inputsGrad.randomizeUniform();
denoms.add(0.01);
GpuMatrix inputsGradGpu(numSamples, width);
GpuMatrix inputsValueGpu(numSamples, width);
GpuMatrix outputsGradGpu(numSamples, width);
GpuMatrix outputsValueGpu(numSamples, width);
GpuMatrix denomsGpu(numSamples, width);
outputsGradGpu.copyFrom(outputsGrad);
denomsGpu.copyFrom(denoms);
inputsValueGpu.copyFrom(inputsValue);
outputsValueGpu.copyFrom(outputsValue);
inputsGradGpu.copyFrom(inputsGrad);
FunctionBase* cpu = FunctionBase::funcRegistrar_.createByType(
FUNC_NAME(CrossMapNormalGrad, CPU));
FunctionBase* gpu = FunctionBase::funcRegistrar_.createByType(
FUNC_NAME(CrossMapNormalGrad, GPU));
cpu->init(FuncConfig()
.set("size", (size_t)sizeX)
.set("scale", scale)
.set("pow", pow));
gpu->init(FuncConfig()
.set("size", (size_t)sizeX)
.set("scale", scale)
.set("pow", pow));
Dims dims{
(size_t)numSamples, (size_t)channels, (size_t)imgSizeH, (size_t)imgSizeW};
cpu->calc({Tensor(inputsValue.getData(), dims),
Tensor(outputsValue.getData(), dims),
Tensor(outputsGrad.getData(), dims),
Tensor(denoms.getData(), dims)},
{Tensor(inputsGrad.getData(), dims)},
{});
gpu->calc({Tensor(inputsValueGpu.getData(), dims),
Tensor(outputsValueGpu.getData(), dims),
Tensor(outputsGradGpu.getData(), dims),
Tensor(denomsGpu.getData(), dims)},
{Tensor(inputsGradGpu.getData(), dims)},
{});
TensorCheckErr(inputsGrad, inputsGradGpu);
}
TEST(Matrix, crossMapNormalBwd) {
for (auto numSamples : {5, 32}) {
for (auto channels : {1, 5, 32}) {
for (auto imgSizeH : {5, 33, 100}) {
for (auto imgSizeW : {5, 32, 96}) {
for (auto sizeX : {1, 2, 3, 5, 7}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
<< " sizeX=" << sizeX;
testCrossMapNormalBwd(
numSamples, channels, imgSizeH, imgSizeW, sizeX);
}
}
}
}
}
}
int main(int argc, char** argv) { int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv); testing::InitGoogleTest(&argc, argv);
initMain(argc, argv); initMain(argc, argv);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册