Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5d1bbecb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5d1bbecb
编写于
5月 20, 2022
作者:
Z
zn
提交者:
GitHub
5月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]support to spawn processes on mlu (#41787)
上级
2caee61f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
175 addition
and
8 deletion
+175
-8
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-0
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+3
-2
python/paddle/distributed/spawn.py
python/paddle/distributed/spawn.py
+48
-6
python/paddle/distributed/utils.py
python/paddle/distributed/utils.py
+9
-0
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
+112
-0
未找到文件。
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
5d1bbecb
...
...
@@ -41,6 +41,7 @@ if (WITH_ASCEND_CL)
endif
()
if
(
WITH_CNCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
reducer
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
cncl_context
)
endif
()
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
5d1bbecb
...
...
@@ -2224,8 +2224,9 @@ void BindImperative(py::module *m_ptr) {
},
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
defined(PADDLE_WITH_CNCL)
py
::
class_
<
imperative
::
ParallelContext
,
std
::
shared_ptr
<
imperative
::
ParallelContext
>>
(
m
,
"ParallelContext"
);
...
...
python/paddle/distributed/spawn.py
浏览文件 @
5d1bbecb
...
...
@@ -74,7 +74,7 @@ def _py_supported_check():
def
_options_valid_check
(
options
):
# `print_config` keeped as a debug options, not show to users
supported_options
=
[
'start_method'
,
'ips'
,
'gpus'
,
'xpus'
,
'print_config'
,
'backend'
'start_method'
,
'ips'
,
'gpus'
,
'xpus'
,
'
mlus'
,
'
print_config'
,
'backend'
]
deprecated_options
=
[
'selected_devices'
,
'started_port'
,
'cluster_node_ips'
,
'node_ip'
,
...
...
@@ -99,6 +99,8 @@ def _get_default_nprocs():
return
core
.
get_cuda_device_count
()
elif
'xpu'
in
device
:
return
core
.
get_xpu_device_count
()
elif
'mlu'
in
device
:
return
core
.
get_mlu_device_count
()
elif
'cpu'
in
device
:
return
multiprocessing
.
cpu_count
()
else
:
...
...
@@ -113,6 +115,8 @@ def _get_default_backend():
return
'nccl'
elif
'xpu'
in
device
:
return
'bkcl'
elif
'mlu'
in
device
:
return
'cncl'
elif
'cpu'
in
device
:
return
'gloo'
else
:
...
...
@@ -232,6 +236,40 @@ def _get_subprocess_env_list(nprocs, options):
raise
ValueError
(
"The selected xpu card %s cannot found in "
"XPU_VISIBLE_DEVICES (%s)."
%
(
card_id
,
","
.
join
(
env_devices_list
)))
elif
options
[
'backend'
]
==
'cncl'
:
args
.
selected_devices
=
options
.
get
(
'mlus'
,
None
)
if
args
.
selected_devices
is
None
:
args
.
selected_devices
=
options
.
get
(
'selected_devices'
,
None
)
env_devices
=
os
.
getenv
(
"MLU_VISIBLE_DEVICES"
,
None
)
if
env_devices
is
None
or
env_devices
==
""
:
env_devices_list
=
[
str
(
x
)
for
x
in
six
.
moves
.
range
(
core
.
get_mlu_device_count
())
]
else
:
env_devices_list
=
env_devices
.
split
(
','
)
if
args
.
selected_devices
is
None
:
if
len
(
env_devices_list
)
<
nprocs
:
raise
RuntimeError
(
"the number of visible devices(%d) is less than the number "
"of spawn processes(%d), please ensure that the correct "
"`nprocs` argument is passed or the environment variable "
"`MLU_VISIBLE_DEVICES` is correctly configured."
%
(
len
(
env_devices_list
),
nprocs
))
args
.
selected_devices
=
","
.
join
(
[
str
(
env_devices_list
[
x
])
for
x
in
range
(
0
,
nprocs
)])
else
:
selected_device_list
=
args
.
selected_devices
.
split
(
','
)
if
len
(
selected_device_list
)
!=
nprocs
:
raise
ValueError
(
"The number of selected devices(%s) is not equal to "
"the number of spawn processes(%d), please ensure that the "
"correct `nprocs` and `mlus` arguments are passed."
%
(
len
(
selected_device_list
),
nprocs
))
for
card_id
in
selected_device_list
:
if
card_id
not
in
env_devices_list
:
raise
ValueError
(
"The selected mlu card %s cannot found in "
"MLU_VISIBLE_DEVICES (%s)."
%
(
card_id
,
","
.
join
(
env_devices_list
)))
elif
options
[
'backend'
]
==
'gloo'
:
# TODO check gpu / xpu flag must not exist
warnings
.
warn
(
...
...
@@ -303,6 +341,8 @@ def _set_trainer_env(env_dict, backend):
set_flags
({
'FLAGS_selected_gpus'
:
env_dict
[
'FLAGS_selected_gpus'
]})
elif
backend
==
'bkcl'
:
set_flags
({
'FLAGS_selected_xpus'
:
env_dict
[
'FLAGS_selected_xpus'
]})
elif
backend
==
'cncl'
:
set_flags
({
'FLAGS_selected_mlus'
:
env_dict
[
'FLAGS_selected_mlus'
]})
else
:
#NOTE(xiongkun) why not raise Error ?
# So far, we added support for CPU parallel, and will be applied when paddle is not
...
...
@@ -396,9 +436,9 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
Start multiple processes with ``spawn`` method for parallel training.
.. note::
``spawn`` now only supports GPU or XPU collective mode. The collective mode
of GPU and XPU cannot be started at the same time, so the option `gpus` and
`xpus` cannot be configured at the same time.
``spawn`` now only supports GPU or XPU
or MLU
collective mode. The collective mode
of GPU and XPU
and MLU
cannot be started at the same time, so the option `gpus` and
`xpus`
and 'mlus'
cannot be configured at the same time.
Args:
func (function): The target function is called by spawned process.
...
...
@@ -425,7 +465,9 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
selected gpus, such as "0,1,2,3". Default: None;
(3) xpus (string): The training process will run on the
selected xpus, such as "0,1,2,3". Default: None;
(4) ips (string): Paddle cluster nodes ips, such as
(4) mlus (string): The training process will run on the
selected mlus, such as "0,1,2,3". Default: None;
(5) ips (string): Paddle cluster nodes ips, such as
"192.168.0.16,192.168.0.17". Default: "127.0.0.1" .
Returns:
...
...
@@ -457,7 +499,7 @@ def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
# 2. create data parallel layer & optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer,
process_group=
process_group)
dp_layer = paddle.DataParallel(layer,
group =
process_group)
loss_fn = nn.MSELoss()
adam = opt.Adam(
...
...
python/paddle/distributed/utils.py
浏览文件 @
5d1bbecb
...
...
@@ -686,6 +686,15 @@ def _prepare_trainer_env(cluster, trainer, backend=None):
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
elif
backend
==
'cncl'
:
proc_env
=
{
"FLAGS_selected_mlus"
:
"%s"
%
","
.
join
([
str
(
g
)
for
g
in
trainer
.
gpus
]),
"PADDLE_TRAINER_ID"
:
"%d"
%
trainer
.
rank
,
"PADDLE_CURRENT_ENDPOINT"
:
"%s"
%
trainer
.
endpoint
,
"PADDLE_TRAINERS_NUM"
:
"%d"
%
cluster
.
trainers_nranks
(),
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
elif
backend
==
'gloo'
:
# NOTE (xiongkun) default fall back into cpu only
proc_env
=
{
...
...
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
浏览文件 @
5d1bbecb
...
...
@@ -7,12 +7,14 @@ if (WITH_MLU)
foreach
(
TEST_OP
${
TEST_DIST_OPS
}
)
LIST
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
LIST
(
REMOVE_ITEM TEST_OPS
"test_spawn_mlu"
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
if
(
WITH_CNCL
)
LIST
(
APPEND TEST_DIST_OPS
"test_spawn_mlu"
)
foreach
(
TEST_OP
${
TEST_DIST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
0 → 100644
浏览文件 @
5d1bbecb
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
os
import
paddle
import
paddle.nn
as
nn
import
paddle.optimizer
as
opt
import
paddle.distributed
as
dist
from
paddle.distributed.spawn
import
_get_subprocess_env_list
,
_options_valid_check
,
_get_default_nprocs
from
paddle.fluid
import
core
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
def
train
(
print_result
=
False
):
# 1. initialize parallel environment
dist
.
init_parallel_env
()
# 2. create data parallel layer & optimizer
layer
=
LinearNet
()
dp_layer
=
paddle
.
DataParallel
(
layer
)
loss_fn
=
nn
.
MSELoss
()
adam
=
opt
.
Adam
(
learning_rate
=
0.001
,
parameters
=
dp_layer
.
parameters
())
# 3. run layer
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
if
print_result
is
True
:
print
(
"Rank:"
,
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
)))
loss
.
backward
()
adam
.
step
()
adam
.
clear_grad
()
return
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
class
TestSpawn
(
unittest
.
TestCase
):
def
test_nprocs_greater_than_device_num_error
(
self
):
with
self
.
assertRaises
(
RuntimeError
):
_get_subprocess_env_list
(
nprocs
=
100
,
options
=
dict
())
def
test_selected_devices_error
(
self
):
with
self
.
assertRaises
(
ValueError
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101"
_get_subprocess_env_list
(
nprocs
=
2
,
options
=
options
)
def
test_get_correct_env
(
self
):
options
=
dict
()
options
[
'print_config'
]
=
True
env_dict
=
_get_subprocess_env_list
(
nprocs
=
1
,
options
=
options
)[
0
]
self
.
assertEqual
(
env_dict
[
'PADDLE_TRAINER_ID'
],
'0'
)
self
.
assertEqual
(
env_dict
[
'PADDLE_TRAINERS_NUM'
],
'1'
)
def
test_nprocs_not_equal_to_selected_devices
(
self
):
with
self
.
assertRaises
(
ValueError
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101,102"
_get_subprocess_env_list
(
nprocs
=
2
,
options
=
options
)
def
test_options_valid_check
(
self
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101,102"
_options_valid_check
(
options
)
with
self
.
assertRaises
(
ValueError
):
options
[
'error'
]
=
"error"
_options_valid_check
(
options
)
def
test_get_default_nprocs
(
self
):
paddle
.
set_device
(
'mlu'
)
nprocs
=
_get_default_nprocs
()
self
.
assertEqual
(
nprocs
,
core
.
get_mlu_device_count
())
def
test_spawn
(
self
):
context
=
dist
.
spawn
(
train
,
backend
=
'cncl'
,
nprocs
=
4
)
rank_list
=
[]
for
i
in
range
(
4
):
rank_list
.
append
(
context
.
return_queues
[
i
].
get
())
rank_list
.
sort
()
self
.
assertEqual
(
rank_list
,
list
(
range
(
4
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录