Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5d19f8d8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5d19f8d8
编写于
4月 21, 2021
作者:
J
jakpiase
提交者:
GitHub
4月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Added bilinear and nearest interp v2 oneDNN FP32 kernels (#32312)
上级
4898c38d
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
465 addition
and
11 deletion
+465
-11
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.cc
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.cc
+3
-2
paddle/fluid/framework/ir/placement_pass_base.cc
paddle/fluid/framework/ir/placement_pass_base.cc
+2
-1
paddle/fluid/operators/interpolate_v2_op.cc
paddle/fluid/operators/interpolate_v2_op.cc
+36
-2
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
+24
-6
python/paddle/fluid/tests/unittests/mkldnn/test_bilinear_interp_mkldnn_op.py
.../tests/unittests/mkldnn/test_bilinear_interp_mkldnn_op.py
+2
-0
python/paddle/fluid/tests/unittests/mkldnn/test_bilinear_interp_v2_mkldnn_op.py
...sts/unittests/mkldnn/test_bilinear_interp_v2_mkldnn_op.py
+210
-0
python/paddle/fluid/tests/unittests/mkldnn/test_nearest_interp_mkldnn_op.py
...d/tests/unittests/mkldnn/test_nearest_interp_mkldnn_op.py
+2
-0
python/paddle/fluid/tests/unittests/mkldnn/test_nearest_interp_v2_mkldnn_op.py
...ests/unittests/mkldnn/test_nearest_interp_v2_mkldnn_op.py
+184
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+2
-0
未找到文件。
paddle/fluid/framework/ir/mkldnn/interpolate_mkldnn_pass.cc
浏览文件 @
5d19f8d8
...
...
@@ -43,8 +43,9 @@ void InterpolateMKLDNNPass::ApplyImpl(ir::Graph* graph) const {
int
found_count
=
0
;
const
std
::
vector
<
std
::
string
>
interpolate_op_types
=
{
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"bicubic_interp"
,
"linear_interp"
};
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"bicubic_interp"
,
"linear_interp"
,
"bilinear_interp_v2"
,
"nearest_interp_v2"
};
for
(
const
Node
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
...
...
paddle/fluid/framework/ir/placement_pass_base.cc
浏览文件 @
5d19f8d8
...
...
@@ -77,7 +77,8 @@ bool PlacementPassBase::IsDefaultOpTypes(const std::string& op_type) const {
// the corresponding pass.
const
std
::
vector
<
std
::
string
>
not_default_op_types
=
{
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"bicubic_interp"
,
"linear_interp"
};
"bicubic_interp"
,
"linear_interp"
,
"bilinear_interp_v2"
,
"linear_interp_v2"
};
bool
is_interpolate_op
=
std
::
find
(
not_default_op_types
.
begin
(),
not_default_op_types
.
end
(),
op_type
)
!=
not_default_op_types
.
end
();
...
...
paddle/fluid/operators/interpolate_v2_op.cc
浏览文件 @
5d19f8d8
...
...
@@ -14,6 +14,9 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -359,13 +362,41 @@ class InterpolateV2Op : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
#ifdef PADDLE_WITH_MKLDNN
auto
interp_method
=
ctx
.
Attr
<
std
::
string
>
(
"interp_method"
);
// TODO(danqing): support other interp_method
if
(
this
->
CanMKLDNNBeUsed
(
ctx
,
data_type
)
&&
(
interp_method
==
"nearest"
||
interp_method
==
"bilinear"
))
{
layout
=
framework
::
DataLayout
::
kMKLDNN
;
library
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
return
framework
::
OpKernelType
(
data_type
,
ctx
.
GetPlace
(),
layout
,
library
);
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
override
{
#ifdef PADDLE_WITH_MKLDNN
if
((
expected_kernel_type
.
data_layout_
==
framework
::
DataLayout
::
kMKLDNN
)
&&
(
tensor
.
layout
()
!=
framework
::
DataLayout
::
kMKLDNN
))
{
auto
attrs
=
Attrs
();
auto
ar
=
paddle
::
framework
::
AttrReader
(
attrs
);
const
std
::
string
data_format
=
ar
.
Get
<
std
::
string
>
(
"data_layout"
);
auto
dl
=
framework
::
StringToDataLayout
(
data_format
);
// Some models may have intentionally set "AnyLayout" for pool
// op. Treat this as NCHW (default data_format value)
if
(
dl
!=
framework
::
DataLayout
::
kAnyLayout
)
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
dl
);
}
}
#endif
if
(
var_name
==
"SizeTensor"
||
var_name
==
"Scale"
)
{
return
expected_kernel_type
;
}
...
...
@@ -436,6 +467,9 @@ class InterpolateV2OpMaker : public framework::OpProtoAndCheckerMaker {
"can be
\'
0
\'
for src_idx = scale*(dst_indx+0.5)-0.5 , "
"can be
\'
1
\'
for src_idx = scale*dst_index ."
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
This operator samples input X to given output shape by using specified
interpolation method, the interpolation methods can be \"nearest\"
...
...
paddle/fluid/operators/mkldnn/interpolate_mkldnn_op.cc
浏览文件 @
5d19f8d8
...
...
@@ -33,7 +33,7 @@ class InterpolateMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
resampling_forward
>
{
public:
InterpolateMKLDNNHandler
(
const
dnnl
::
algorithm
algo
,
const
p
addle
::
p
latform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
dnnl
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
Tensor
*
z
,
const
std
::
string
&
uniq_name
)
...
...
@@ -94,19 +94,32 @@ class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
out_dims
=
out_size_data
;
}
}
else
{
float
scale
;
std
::
vector
<
float
>
scale
;
scale
.
reserve
(
3
);
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
scale
.
resize
(
3
,
scale_data
[
0
]);
std
::
copy
(
scale_data
.
begin
(),
scale_data
.
end
(),
scale
.
begin
());
}
else
{
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
std
::
string
op_type
=
ctx
.
Type
();
if
(
op_type
.
find
(
"v2"
)
==
std
::
string
::
npos
)
{
// v1
scale
.
push_back
(
ctx
.
Attr
<
float
>
(
"scale"
));
scale
.
push_back
(
scale
[
0
]);
scale
.
push_back
(
scale
[
0
]);
}
else
{
// v2
std
::
vector
<
float
>
scale_attr
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
scale
.
resize
(
3
,
scale_attr
[
0
]);
std
::
copy
(
scale_attr
.
begin
(),
scale_attr
.
end
(),
scale
.
begin
());
}
}
if
(
scale
>
0
)
{
if
(
scale
[
0
]
>
0.0
f
&&
scale
[
1
]
>
0.0
f
&&
scale
[
2
]
>
0.0
f
)
{
int
j
=
0
;
std
::
vector
<
int64_t
>
in_dhw_vec
=
framework
::
vectorize
(
in_dhw_dims
);
std
::
transform
(
in_dhw_vec
.
begin
(),
in_dhw_vec
.
end
(),
out_dims
.
begin
(),
[
&
](
int64_t
i
)
->
int
{
return
static_cast
<
int
>
(
i
*
scale
);
});
[
&
](
int64_t
i
)
->
int
{
return
static_cast
<
int
>
(
i
*
scale
[
j
++
]
);
});
}
}
...
...
@@ -172,3 +185,8 @@ REGISTER_OP_KERNEL(nearest_interp, MKLDNN, ::paddle::platform::CPUPlace,
ops
::
InterpolateMKLDNNKernel
<
float
>
);
REGISTER_OP_KERNEL
(
bilinear_interp
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
InterpolateMKLDNNKernel
<
float
>
);
REGISTER_OP_KERNEL
(
nearest_interp_v2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
InterpolateMKLDNNKernel
<
float
>
);
REGISTER_OP_KERNEL
(
bilinear_interp_v2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
InterpolateMKLDNNKernel
<
float
>
);
python/paddle/fluid/tests/unittests/mkldnn/test_bilinear_interp_mkldnn_op.py
浏览文件 @
5d19f8d8
...
...
@@ -198,4 +198,6 @@ class TestBilinearNeighborInterpSame(TestBilinearInterpMKLDNNOp):
if
__name__
==
"__main__"
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_bilinear_interp_v2_mkldnn_op.py
0 → 100644
浏览文件 @
5d19f8d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.op_test
import
skip_check_grad_ci
def
bilinear_interp_mkldnn_np
(
input
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
,
data_layout
=
'NCHW'
):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
input
=
np
.
transpose
(
input
,
(
0
,
3
,
1
,
2
))
# NHWC => NCHW
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
batch_size
,
channel
,
in_h
,
in_w
=
input
.
shape
out
=
np
.
zeros
((
batch_size
,
channel
,
out_h
,
out_w
))
for
oh
in
range
(
out_h
):
h0
=
int
(
math
.
floor
((
oh
+
0.5
)
*
in_h
/
out_h
-
0.5
))
h1
=
int
(
math
.
ceil
((
oh
+
0.5
)
*
in_h
/
out_h
-
0.5
))
h0
=
max
(
h0
,
0
)
h1
=
min
(
h1
,
in_h
-
1
)
Wh
=
(
oh
+
0.5
)
*
in_h
/
out_h
-
0.5
-
h0
for
ow
in
range
(
out_w
):
w0
=
int
(
math
.
floor
((
ow
+
0.5
)
*
in_w
/
out_w
-
0.5
))
w1
=
int
(
math
.
ceil
((
ow
+
0.5
)
*
in_w
/
out_w
-
0.5
))
w0
=
max
(
w0
,
0
)
w1
=
min
(
w1
,
in_w
-
1
)
Ww
=
(
ow
+
0.5
)
*
in_w
/
out_w
-
0.5
-
w0
input_h0_w0
=
input
[:,
:,
h0
,
w0
]
input_h1_w0
=
input
[:,
:,
h1
,
w0
]
input_h0_w1
=
input
[:,
:,
h0
,
w1
]
input_h1_w1
=
input
[:,
:,
h1
,
w1
]
out
[:,
:,
oh
,
ow
]
=
input_h0_w0
*
(
1
-
Wh
)
*
(
1
-
Ww
)
+
input_h1_w0
*
Wh
*
(
1
-
Ww
)
+
input_h0_w1
*
(
1
-
Wh
)
*
Ww
+
input_h1_w1
*
Wh
*
Ww
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
return
out
.
astype
(
input
.
dtype
)
@
skip_check_grad_ci
(
reason
=
"Haven not implement interpolate grad kernel."
)
class
TestBilinearInterpMKLDNNOp
(
OpTest
):
def
init_test_case
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"bilinear_interp_v2"
self
.
interp_method
=
'bilinear'
self
.
_cpu_only
=
True
self
.
use_mkldnn
=
True
self
.
input_shape
=
[
1
,
1
,
2
,
2
]
self
.
data_layout
=
'NCHW'
# priority: actual_shape > out_size > scale > out_h & out_w
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
2.0
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
scale_h
=
0
scale_w
=
0
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
scale_h
=
float
(
self
.
scale
)
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
self
.
scale
[
0
]
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
if
scale_h
>
0
and
scale_w
>
0
:
out_h
=
int
(
in_h
*
scale_h
)
out_w
=
int
(
in_w
*
scale_w
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
bilinear_interp_mkldnn_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
data_layout
)
if
isinstance
(
self
.
scale
,
float
):
self
.
scale
=
[
self
.
scale
,
self
.
scale
]
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'data_layout'
:
self
.
data_layout
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestBilinearInterpOpMKLDNNNHWC
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
27
self
.
out_w
=
49
self
.
scale
=
[
2.0
,
3.0
]
self
.
data_layout
=
'NHWC'
class
TestBilinearNeighborInterpMKLDNNCase2
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
class
TestBilinearNeighborInterpCase3
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
[
0.1
,
0.05
]
class
TestBilinearNeighborInterpCase4
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
[
13.0
,
15.0
]
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestBilinearNeighborInterpCase5
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_size
=
np
.
array
([
13
,
13
]).
astype
(
"int32"
)
class
TestBilinearNeighborInterpCase6
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
1.0
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestBilinearNeighborInterpSame
(
TestBilinearInterpMKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
scale
=
2.0
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_nearest_interp_mkldnn_op.py
浏览文件 @
5d19f8d8
...
...
@@ -163,4 +163,6 @@ class TestNearestNeighborInterpSame(TestNearestInterpMKLDNNOp):
if
__name__
==
"__main__"
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mkldnn/test_nearest_interp_v2_mkldnn_op.py
0 → 100644
浏览文件 @
5d19f8d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.tests.unittests.op_test
import
OpTest
from
paddle.fluid.tests.unittests.op_test
import
skip_check_grad_ci
def
nearest_neighbor_interp_mkldnn_np
(
X
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
,
data_layout
=
'NCHW'
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
X
=
np
.
transpose
(
X
,
(
0
,
3
,
1
,
2
))
# NHWC => NCHW
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
n
,
c
,
in_h
,
in_w
=
X
.
shape
fh
=
fw
=
0.0
if
(
out_h
>
1
):
fh
=
out_h
*
1.0
/
in_h
if
(
out_w
>
1
):
fw
=
out_w
*
1.0
/
in_w
out
=
np
.
zeros
((
n
,
c
,
out_h
,
out_w
))
for
oh
in
range
(
out_h
):
ih
=
int
(
round
((
oh
+
0.5
)
/
fh
-
0.5
))
for
ow
in
range
(
out_w
):
iw
=
int
(
round
((
ow
+
0.5
)
/
fw
-
0.5
))
out
[:,
:,
oh
,
ow
]
=
X
[:,
:,
ih
,
iw
]
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
return
out
.
astype
(
X
.
dtype
)
@
skip_check_grad_ci
(
reason
=
"Haven not implement interpolate grad kernel."
)
class
TestNearestInterpV2MKLDNNOp
(
OpTest
):
def
init_test_case
(
self
):
pass
def
setUp
(
self
):
self
.
op_type
=
"nearest_interp_v2"
self
.
interp_method
=
'nearest'
self
.
_cpu_only
=
True
self
.
use_mkldnn
=
True
self
.
input_shape
=
[
1
,
1
,
2
,
2
]
self
.
data_layout
=
'NCHW'
# priority: actual_shape > out_size > scale > out_h & out_w
self
.
out_h
=
1
self
.
out_w
=
1
self
.
scale
=
[
2.0
,
3.0
]
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
if
self
.
data_layout
==
"NCHW"
:
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
scale_h
=
0
scale_w
=
0
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
scale_h
=
float
(
self
.
scale
)
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
self
.
scale
[
0
]
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
if
scale_h
>
0
and
scale_w
>
0
:
out_h
=
int
(
in_h
*
scale_h
)
out_w
=
int
(
in_w
*
scale_w
)
else
:
out_h
=
self
.
out_h
out_w
=
self
.
out_w
output_np
=
nearest_neighbor_interp_mkldnn_np
(
input_np
,
out_h
,
out_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
data_layout
)
if
isinstance
(
self
.
scale
,
float
):
self
.
scale
=
[
self
.
scale
]
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'scale'
:
self
.
scale
,
'data_layout'
:
self
.
data_layout
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
(
check_dygraph
=
False
)
class
TestNearestInterpOpV2MKLDNNNHWC
(
TestNearestInterpV2MKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
27
self
.
out_w
=
49
self
.
scale
=
[
2.0
,
3.0
]
self
.
data_layout
=
'NHWC'
class
TestNearestNeighborInterpV2MKLDNNCase2
(
TestNearestInterpV2MKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
class
TestNearestNeighborInterpV2MKLDNNCase3
(
TestNearestInterpV2MKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
scale
=
[
0.1
,
0.05
]
class
TestNearestNeighborInterpV2MKLDNNCase4
(
TestNearestInterpV2MKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
1
,
1
,
32
,
64
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
scale
=
[
13.0
,
15.0
]
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpV2MKLDNNSame
(
TestNearestInterpV2MKLDNNOp
):
def
init_test_case
(
self
):
self
.
input_shape
=
[
2
,
3
,
32
,
64
]
self
.
out_h
=
32
self
.
out_w
=
64
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
tools/static_mode_white_list.py
浏览文件 @
5d19f8d8
...
...
@@ -603,7 +603,9 @@ STATIC_MODE_TESTING_LIST = [
'test_fc_mkldnn_op'
,
'test_fc_bf16_mkldnn_op'
,
'test_nearest_interp_mkldnn_op'
,
'test_nearest_interp_v2_mkldnn_op'
,
'test_bilinear_interp_mkldnn_op'
,
'test_bilinear_interp_v2_mkldnn_op'
,
'test_fusion_gru_int8_mkldnn_op'
,
'test_fusion_gru_bf16_mkldnn_op'
,
'test_fusion_gru_mkldnn_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录