Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5ce7f48d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5ce7f48d
编写于
4月 20, 2022
作者:
H
Haohongxiang
提交者:
GitHub
4月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dygraph] Refactor Model Parallel in eager mode (#41761) (#41960)
* refactor mp in eager mode * update * update * add uts
上级
ef78c9c2
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
305 addition
and
45 deletion
+305
-45
paddle/fluid/operators/class_center_sample_op.cu
paddle/fluid/operators/class_center_sample_op.cu
+30
-13
paddle/fluid/operators/collective/c_allreduce_op.h
paddle/fluid/operators/collective/c_allreduce_op.h
+40
-1
paddle/fluid/operators/collective/c_concat_op.cu.cc
paddle/fluid/operators/collective/c_concat_op.cu.cc
+31
-16
paddle/fluid/operators/collective/c_softmax_with_cross_entropy_op.cu
...d/operators/collective/c_softmax_with_cross_entropy_op.cu
+139
-0
paddle/fluid/operators/collective/c_softmax_with_cross_entropy_op.h
...id/operators/collective/c_softmax_with_cross_entropy_op.h
+12
-0
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+26
-2
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+1
-1
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+3
-1
python/paddle/fluid/tests/unittests/test_parallel_class_center_sample.py
...luid/tests/unittests/test_parallel_class_center_sample.py
+4
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_dataparallel.py
...uid/tests/unittests/test_parallel_dygraph_dataparallel.py
+8
-10
python/paddle/fluid/tests/unittests/test_parallel_dygraph_mp_layers.py
.../fluid/tests/unittests/test_parallel_dygraph_mp_layers.py
+3
-0
python/paddle/fluid/tests/unittests/test_parallel_dygraph_tensor_parallel.py
.../tests/unittests/test_parallel_dygraph_tensor_parallel.py
+8
-1
未找到文件。
paddle/fluid/operators/class_center_sample_op.cu
浏览文件 @
5ce7f48d
...
...
@@ -27,8 +27,10 @@ namespace cub = hipcub;
#include <iterator>
#include <random>
#include "paddle/fluid/operators/class_center_sample_op.h"
#include "paddle/phi/api/include/tensor.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -328,19 +330,34 @@ class ClassCenterSampleCUDAKernel : public framework::OpKernel<T> {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
if
(
nranks
>
1
)
{
const
auto
&
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
ctx
.
GetPlace
());
// use global calculate stream
const
auto
calcu_stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
ctx
.
GetPlace
()))
->
stream
();
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclAllReduce
(
num_classes_per_device_ptr
,
num_classes_per_device_ptr
,
num_classes_per_device
.
numel
(),
platform
::
ToNCCLDataType
(
framework
::
TransToProtoVarType
(
num_classes_per_device
.
dtype
())),
ncclSum
,
comm
->
comm
(),
calcu_stream
));
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
in_tensor
.
push_back
(
num_classes_per_device
);
out_tensor
.
push_back
(
num_classes_per_device
);
distributed
::
AllreduceOptions
opts
;
opts
.
reduce_op
=
distributed
::
ReduceOp
::
SUM
;
auto
task
=
pg
->
AllReduce
(
in_tensor
,
out_tensor
,
opts
);
task
->
Wait
();
}
else
{
const
auto
&
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
ctx
.
GetPlace
());
// use global calculate stream
const
auto
calcu_stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
ctx
.
GetPlace
()))
->
stream
();
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclAllReduce
(
num_classes_per_device_ptr
,
num_classes_per_device_ptr
,
num_classes_per_device
.
numel
(),
platform
::
ToNCCLDataType
(
framework
::
TransToProtoVarType
(
num_classes_per_device
.
dtype
())),
ncclSum
,
comm
->
comm
(),
calcu_stream
));
}
}
#endif
...
...
paddle/fluid/operators/collective/c_allreduce_op.h
浏览文件 @
5ce7f48d
...
...
@@ -16,12 +16,14 @@ limitations under the License. */
#include <string>
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
#include "paddle/phi/api/include/tensor.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_XPU_BKCL) || \
...
...
@@ -351,6 +353,7 @@ class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
place
=
ctx
.
GetPlace
();
ncclDataType_t
dtype
=
...
...
@@ -360,7 +363,43 @@ class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
out
->
Resize
(
in
->
dims
());
void
*
recvbuff
=
out
->
mutable_data
<
T
>
(
place
);
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
in_tensor
.
push_back
(
*
in
);
out_tensor
.
push_back
(
*
out
);
distributed
::
AllreduceOptions
opts
;
switch
(
red_type
)
{
case
kRedSum
:
opts
.
reduce_op
=
distributed
::
ReduceOp
::
SUM
;
break
;
case
kRedMax
:
opts
.
reduce_op
=
distributed
::
ReduceOp
::
MAX
;
break
;
case
kRedMin
:
opts
.
reduce_op
=
distributed
::
ReduceOp
::
MIN
;
break
;
case
kRedProd
:
opts
.
reduce_op
=
distributed
::
ReduceOp
::
PRODUCT
;
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Invalid reduce type: %d"
,
red_type
));
}
auto
task
=
pg
->
AllReduce
(
in_tensor
,
out_tensor
,
opts
);
task
->
Wait
();
return
;
}
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
gpuStream_t
stream
=
nullptr
;
...
...
paddle/fluid/operators/collective/c_concat_op.cu.cc
浏览文件 @
5ce7f48d
...
...
@@ -16,8 +16,10 @@ limitations under the License. */
#include "paddle/fluid/operators/collective/c_concat_op.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/phi/api/include/tensor.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
...
...
@@ -55,26 +57,39 @@ class CConcatOpCUDAKernel : public framework::OpKernel<T> {
rank
,
nranks
));
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
PADDLE_ENFORCE_EQ
(
nranks
,
comm
->
nranks
(),
platform
::
errors
::
InvalidArgument
(
"nranks: %s should equal to %s"
,
nranks
,
comm
->
nranks
()));
framework
::
Tensor
temp_out
;
framework
::
DDim
temp_out_dims
=
x
->
dims
();
temp_out_dims
[
0
]
*=
nranks
;
temp_out
.
mutable_data
<
T
>
(
temp_out_dims
,
place
);
int64_t
send_numel
=
x
->
numel
();
const
T
*
send_buff
=
x
->
data
<
T
>
();
T
*
recv_buff
=
temp_out
.
data
<
T
>
();
gpuStream_t
stream
=
nullptr
;
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclAllGather
(
send_buff
,
recv_buff
,
send_numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
comm
->
comm
(),
stream
));
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
// Use ProcessGroup
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
std
::
vector
<
phi
::
DenseTensor
>
in_tensor
;
std
::
vector
<
phi
::
DenseTensor
>
out_tensor
;
in_tensor
.
push_back
(
*
x
);
out_tensor
.
push_back
(
temp_out
);
auto
task
=
pg
->
AllGather
(
in_tensor
,
out_tensor
);
task
->
Wait
();
}
else
{
auto
comm
=
platform
::
NCCLCommContext
::
Instance
().
Get
(
rid
,
place
);
PADDLE_ENFORCE_EQ
(
nranks
,
comm
->
nranks
(),
platform
::
errors
::
InvalidArgument
(
"nranks: %s should equal to %s"
,
nranks
,
comm
->
nranks
()));
int64_t
send_numel
=
x
->
numel
();
const
T
*
send_buff
=
x
->
data
<
T
>
();
T
*
recv_buff
=
temp_out
.
data
<
T
>
();
gpuStream_t
stream
=
nullptr
;
auto
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
dev_ctx
)
->
stream
();
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclAllGather
(
send_buff
,
recv_buff
,
send_numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
comm
->
comm
(),
stream
));
}
std
::
vector
<
framework
::
Tensor
>
inputs
;
int
axis
=
x
->
dims
().
size
()
-
1
;
...
...
paddle/fluid/operators/collective/c_softmax_with_cross_entropy_op.cu
浏览文件 @
5ce7f48d
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
paddle
{
...
...
@@ -73,6 +74,21 @@ template <typename T>
class
CSoftmaxWithCrossEntropyOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
CSoftmaxWithCrossEntropyProcessGroupFunctor
<
phi
::
GPUContext
,
T
>
functor_
;
functor_
(
ctx
);
}
else
{
CSoftmaxWithCrossEntropyFunctor
<
phi
::
GPUContext
,
T
>
functor_
;
functor_
(
ctx
);
}
}
};
template
<
typename
T
>
struct
CSoftmaxWithCrossEntropyFunctor
<
phi
::
GPUContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
{
const
Tensor
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
softmax
=
ctx
.
Output
<
Tensor
>
(
"Softmax"
);
...
...
@@ -201,6 +217,129 @@ class CSoftmaxWithCrossEntropyOpCUDAKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
struct
CSoftmaxWithCrossEntropyProcessGroupFunctor
<
phi
::
GPUContext
,
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
{
const
Tensor
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
softmax
=
ctx
.
Output
<
Tensor
>
(
"Softmax"
);
Tensor
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
const
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
const
int
nranks
=
ctx
.
Attr
<
int
>
(
"nranks"
);
const
int
rank
=
ctx
.
Attr
<
int
>
(
"rank"
);
const
auto
&
place
=
ctx
.
GetPlace
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
distributed
::
AllreduceOptions
opts
;
opts
.
reduce_op
=
distributed
::
ReduceOp
::
SUM
;
// allocate memory on device.
softmax
->
mutable_data
<
T
>
(
place
);
loss
->
mutable_data
<
T
>
(
place
);
const
auto
&
logits_dims
=
logits
->
dims
();
const
auto
&
labels_dims
=
labels
->
dims
();
const
int
axis
=
logits_dims
.
size
()
-
1
;
const
int
N
=
phi
::
funcs
::
SizeToAxis
(
axis
,
logits_dims
);
const
int
D
=
phi
::
funcs
::
SizeFromAxis
(
axis
,
logits_dims
);
Tensor
logits_2d
,
softmax_2d
,
loss_2d
;
logits_2d
.
ShareDataWith
(
*
logits
).
Resize
({
N
,
D
});
softmax_2d
.
ShareDataWith
(
*
softmax
).
Resize
({
N
,
D
});
loss_2d
.
ShareDataWith
(
*
loss
).
Resize
({
N
,
1
});
auto
eigen_logits
=
math
::
EigenMatrix
<
T
>::
From
(
logits_2d
);
auto
eigen_softmax
=
math
::
EigenMatrix
<
T
>::
From
(
softmax_2d
);
// step 1, obtain logit_max
Tensor
logits_max
;
logits_max
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
N
,
1
},
dev_ctx
);
auto
eigen_logits_max
=
math
::
EigenMatrix
<
T
>::
From
(
logits_max
);
Eigen
::
DSizes
<
int
,
1
>
along_axis
(
1
);
eigen_logits_max
.
device
(
*
dev_ctx
.
eigen_device
())
=
eigen_logits
.
maximum
(
along_axis
);
std
::
vector
<
phi
::
DenseTensor
>
in_out
;
in_out
.
push_back
(
logits_max
);
pg
->
AllReduce
(
in_out
,
in_out
,
opts
)
->
Synchronize
();
// step 2, obtain logit - logit_max
Eigen
::
DSizes
<
int
,
2
>
batch_by_one
(
N
,
1
);
Eigen
::
DSizes
<
int
,
2
>
one_by_class
(
1
,
D
);
eigen_softmax
.
device
(
*
dev_ctx
.
eigen_device
())
=
(
eigen_logits
-
eigen_logits_max
.
reshape
(
batch_by_one
).
broadcast
(
one_by_class
))
.
unaryExpr
(
math
::
ValueClip
<
T
>
());
// step 3, obtain predict target
Tensor
predicted_logits
;
predicted_logits
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
N
,
1
},
dev_ctx
);
predicted_logits
.
mutable_data
<
T
>
(
place
);
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
predicted_logits
);
t
.
device
(
*
dev_ctx
.
eigen_device
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
const
int
start_index
=
rank
*
D
;
const
int
end_index
=
start_index
+
D
;
int
blocks
=
NumBlocks
(
N
);
int
threads
=
kNumCUDAThreads
;
const
auto
&
label_type
=
framework
::
TransToProtoVarType
(
labels
->
dtype
());
if
(
label_type
==
framework
::
proto
::
VarType
::
INT32
)
{
MaskLabelByIndex
<
T
,
int32_t
><<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
predicted_logits
.
data
<
T
>
(),
softmax_2d
.
data
<
T
>
(),
labels
->
data
<
int32_t
>
(),
start_index
,
end_index
,
N
,
D
,
nranks
);
}
else
if
(
label_type
==
framework
::
proto
::
VarType
::
INT64
)
{
MaskLabelByIndex
<
T
,
int64_t
><<<
blocks
,
threads
,
0
,
dev_ctx
.
stream
()
>>>
(
predicted_logits
.
data
<
T
>
(),
softmax_2d
.
data
<
T
>
(),
labels
->
data
<
int64_t
>
(),
start_index
,
end_index
,
N
,
D
,
nranks
);
}
in_out
.
clear
();
in_out
.
push_back
(
predicted_logits
);
pg
->
AllReduce
(
in_out
,
in_out
,
opts
)
->
Synchronize
();
// step 4, obtain exp(logit)
eigen_softmax
.
device
(
*
dev_ctx
.
eigen_device
())
=
eigen_softmax
.
exp
();
// step 5, obtain sum_exp_logits
Tensor
sum_exp_logits
;
sum_exp_logits
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
CUDADeviceContext
>
({
N
,
1
},
dev_ctx
);
void
*
sum_exp_logits_buff
=
sum_exp_logits
.
mutable_data
<
T
>
(
place
);
auto
eigen_sum_exp_logits
=
math
::
EigenMatrix
<
T
>::
From
(
sum_exp_logits
);
eigen_sum_exp_logits
.
device
(
*
dev_ctx
.
eigen_device
())
=
eigen_softmax
.
sum
(
along_axis
);
in_out
.
clear
();
in_out
.
push_back
(
sum_exp_logits
);
pg
->
AllReduce
(
in_out
,
in_out
,
opts
)
->
Synchronize
();
auto
eigen_loss
=
math
::
EigenMatrix
<
T
>::
From
(
loss_2d
);
auto
eigen_predicted_logits
=
math
::
EigenMatrix
<
T
>::
From
(
predicted_logits
);
eigen_loss
.
device
(
*
dev_ctx
.
eigen_device
())
=
(
eigen_sum_exp_logits
.
log
().
unaryExpr
(
math
::
TolerableValue
<
T
>
())
-
eigen_predicted_logits
)
.
unaryExpr
(
math
::
TolerableValue
<
T
>
());
eigen_softmax
.
device
(
*
dev_ctx
.
eigen_device
())
=
(
eigen_softmax
*
eigen_sum_exp_logits
.
inverse
().
broadcast
(
one_by_class
));
}
};
template
<
typename
T
>
class
CSoftmaxWithCrossEntropyGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
paddle/fluid/operators/collective/c_softmax_with_cross_entropy_op.h
浏览文件 @
5ce7f48d
...
...
@@ -18,11 +18,13 @@ limitations under the License. */
#include <utility>
#include <vector>
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
#include "paddle/phi/api/include/tensor.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -36,5 +38,15 @@ class CSoftmaxWithCrossEntropyOpCPUKernel : public framework::OpKernel<T> {
}
};
template
<
typename
Context
,
typename
T
>
struct
CSoftmaxWithCrossEntropyFunctor
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
);
};
template
<
typename
Context
,
typename
T
>
struct
CSoftmaxWithCrossEntropyProcessGroupFunctor
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
);
};
}
// namespace operators
}
// namespace paddle
python/paddle/distributed/collective.py
浏览文件 @
5ce7f48d
...
...
@@ -20,6 +20,7 @@ from ..fluid.framework import Variable
from
..fluid.framework
import
in_dygraph_mode
from
..fluid.framework
import
OpProtoHolder
from
..fluid.framework
import
_non_static_mode
from
..fluid.framework
import
_in_legacy_dygraph
from
..fluid.framework
import
convert_np_dtype_to_dtype_
from
..fluid.framework
import
_varbase_creator
from
..fluid.data_feeder
import
convert_dtype
...
...
@@ -1142,13 +1143,36 @@ def _mp_allreduce(tensor,
group
=
None
,
use_calc_stream
=
True
,
use_model_parallel
=
True
):
"""[it is same as allreduce above, but it su
u
ports model parallel. And it support inplace startegy]
"""[it is same as allreduce above, but it su
p
ports model parallel. And it support inplace startegy]
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
ring_id
=
0
if
group
is
None
else
group
.
id
if
_non_static_mode
():
if
in_dygraph_mode
():
assert
op
==
ReduceOp
.
SUM
,
"Unknown parameter: {}."
.
format
(
op
)
from
paddle.autograd
import
EagerPyLayer
class
mp_allreduce_eager
(
EagerPyLayer
):
@
staticmethod
def
forward
(
ctx
,
tensor
,
use_calc_stream
,
ring_id
,
use_model_parallel
):
ctx
.
ring_id
=
ring_id
return
_C_ops
.
c_allreduce_sum_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
"use_model_parallel"
,
use_model_parallel
)
@
staticmethod
def
backward
(
ctx
,
dy
):
return
_C_ops
.
c_identity
(
dy
,
'use_calc_stream'
,
True
,
'ring_id'
,
ctx
.
ring_id
,
'use_model_parallel'
,
True
)
return
mp_allreduce_eager
.
apply
(
tensor
,
use_calc_stream
,
ring_id
,
use_model_parallel
)
elif
_in_legacy_dygraph
():
if
op
==
ReduceOp
.
SUM
:
return
_C_ops
.
c_allreduce_sum_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
5ce7f48d
...
...
@@ -378,7 +378,7 @@ def sync_params_buffers(model,
param
.
name
)
# is_distributed param not need to sync when in mp mode
if
isinstance
(
param
,
ParamBase
):
if
isinstance
(
param
,
(
ParamBase
,
core
.
eager
.
Tensor
)
):
if
is_model_parallel
and
param
.
is_distributed
:
continue
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
5ce7f48d
...
...
@@ -329,7 +329,9 @@ def concat(input, axis=0, name=None):
axis
=
axis
.
item
(
0
)
if
not
isinstance
(
input
,
Variable
):
input
=
[
t
for
t
in
input
if
t
.
shape
.
count
(
0
)
==
0
]
return
_C_ops
.
final_state_concat
(
input
,
axis
)
out
=
_varbase_creator
()
_C_ops
.
concat
(
input
,
out
,
'axis'
,
axis
)
return
out
if
_in_legacy_dygraph
():
if
isinstance
(
axis
,
Variable
):
...
...
python/paddle/fluid/tests/unittests/test_parallel_class_center_sample.py
浏览文件 @
5ce7f48d
...
...
@@ -14,16 +14,20 @@
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid
as
fluid
from
test_parallel_dygraph_dataparallel
import
TestMultipleGpus
from
paddle.fluid.framework
import
_test_eager_guard
class
TestParallelClassCenterSample
(
TestMultipleGpus
):
def
test_parallel_class_center_sample
(
self
):
self
.
run_mnist_2gpu
(
'parallel_class_center_sample.py'
)
self
.
run_mnist_2gpu
(
'parallel_class_center_sample.py'
,
eager_mode
=
False
)
if
__name__
==
"__main__"
:
os
.
environ
[
"FLAGS_enable_eager_mode"
]
=
"1"
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_dygraph_dataparallel.py
浏览文件 @
5ce7f48d
...
...
@@ -100,6 +100,7 @@ def start_local_trainers(cluster,
pod
,
training_script
,
training_script_args
,
eager_mode
=
True
,
log_dir
=
None
):
current_env
=
copy
.
copy
(
os
.
environ
.
copy
())
#paddle broadcast ncclUniqueId use socket, and
...
...
@@ -119,6 +120,9 @@ def start_local_trainers(cluster,
"PADDLE_TRAINER_ENDPOINTS"
:
","
.
join
(
cluster
.
trainers_endpoints
())
}
if
not
eager_mode
:
proc_env
[
"FLAGS_enable_eager_mode"
]
=
"%d"
%
0
current_env
.
update
(
proc_env
)
print
(
"trainer proc env:{}"
.
format
(
current_env
))
...
...
@@ -145,15 +149,8 @@ def start_local_trainers(cluster,
return
procs
def
get_dist_port_from_flags
():
DIST_UT_PORT
=
6175
if
os
.
getenv
(
"PADDLE_DIST_UT_PORT"
):
DIST_UT_PORT
=
int
(
os
.
getenv
(
"PADDLE_DIST_UT_PORT"
))
return
DIST_UT_PORT
class
TestMultipleGpus
(
unittest
.
TestCase
):
def
run_mnist_2gpu
(
self
,
target_file_name
):
def
run_mnist_2gpu
(
self
,
target_file_name
,
eager_mode
=
True
):
if
not
fluid
.
core
.
is_compiled_with_cuda
(
)
or
fluid
.
core
.
get_cuda_device_count
()
==
0
:
return
...
...
@@ -167,6 +164,7 @@ class TestMultipleGpus(unittest.TestCase):
procs
=
start_local_trainers
(
cluster
,
pod
,
eager_mode
=
eager_mode
,
training_script
=
target_file_name
,
training_script_args
=
[])
...
...
@@ -206,9 +204,9 @@ class TestDataParallelGradientCheck(TestMultipleGpus):
class
TestDataParallelWithPyLayer
(
TestMultipleGpus
):
def
test_parallel_dygraph_dataparallel_with_pylayer
(
self
):
with
_test_eager_guard
():
self
.
run_mnist_2gpu
(
'parallel_dygraph_dataparallel_with_pylayer.py'
)
self
.
run_mnist_2gpu
(
'parallel_dygraph_dataparallel_with_pylayer.py'
)
self
.
run_mnist_2gpu
(
'parallel_dygraph_dataparallel_with_pylayer.py'
,
eager_mode
=
False
)
class
TestGradientCheckInEagerMode
(
TestMultipleGpus
):
...
...
python/paddle/fluid/tests/unittests/test_parallel_dygraph_mp_layers.py
浏览文件 @
5ce7f48d
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid
as
fluid
...
...
@@ -23,7 +24,9 @@ from test_parallel_dygraph_dataparallel import TestMultipleGpus
class
TestModelParallelLayer
(
TestMultipleGpus
):
def
test_hybrid_parallel_mp_layer
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_layers.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_layers.py'
,
eager_mode
=
False
)
if
__name__
==
"__main__"
:
os
.
environ
[
"FLAGS_enable_eager_mode"
]
=
"1"
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_dygraph_tensor_parallel.py
浏览文件 @
5ce7f48d
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
import
os
import
unittest
import
paddle.fluid
as
fluid
...
...
@@ -22,20 +23,26 @@ from test_parallel_dygraph_dataparallel import TestMultipleGpus
class
TestHybridParallel
(
TestMultipleGpus
):
def
test_hybrid_parallel_mp_random
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_random.py'
)
# self.run_mnist_2gpu('hybrid_parallel_mp_random.py')
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_random.py'
,
eager_mode
=
False
)
def
test_hybrid_parallel_mp_model
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_model.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_model.py'
,
eager_mode
=
False
)
def
test_hybrid_parallel_mp_amp
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_amp.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_amp.py'
,
eager_mode
=
False
)
def
test_hybrid_parallel_mp_fp16
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_fp16.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_fp16.py'
,
eager_mode
=
False
)
def
test_hybrid_parallel_mp_clip_grad
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_clip_grad.py'
)
self
.
run_mnist_2gpu
(
'hybrid_parallel_mp_clip_grad.py'
,
eager_mode
=
False
)
if
__name__
==
"__main__"
:
os
.
environ
[
"FLAGS_enable_eager_mode"
]
=
"1"
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录