Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5c91010d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5c91010d
编写于
4月 19, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
4月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[AutoParallel] dist p-norm op (#41805)
* add dist_pnorm op * update cmakelist * fix cmakelist * fix cmakelist
上级
2ed01960
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
492 addition
and
0 deletion
+492
-0
python/paddle/distributed/auto_parallel/operators/__init__.py
...on/paddle/distributed/auto_parallel/operators/__init__.py
+1
-0
python/paddle/distributed/auto_parallel/operators/dist_pnorm.py
.../paddle/distributed/auto_parallel/operators/dist_pnorm.py
+363
-0
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_dist_pnorm.py
...le/fluid/tests/unittests/auto_parallel/test_dist_pnorm.py
+127
-0
未找到文件。
python/paddle/distributed/auto_parallel/operators/__init__.py
浏览文件 @
5c91010d
...
@@ -28,6 +28,7 @@ from . import dist_check_finite_and_unscale
...
@@ -28,6 +28,7 @@ from . import dist_check_finite_and_unscale
from
.
import
dist_update_loss_scaling
from
.
import
dist_update_loss_scaling
from
.
import
dist_split
from
.
import
dist_split
from
.
import
dist_fill_constant_batch_size_like
from
.
import
dist_fill_constant_batch_size_like
from
.
import
dist_pnorm
from
.
import
dist_slice
from
.
import
dist_slice
from
.
import
dist_fused_feedforward
from
.
import
dist_fused_feedforward
from
.
import
dist_fused_attention
from
.
import
dist_fused_attention
python/paddle/distributed/auto_parallel/operators/dist_pnorm.py
0 → 100644
浏览文件 @
5c91010d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
paddle
import
paddle.fluid.layers.utils
as
utils
from
.common
import
DistributedOperatorImplContainer
from
.common
import
DistributedOperatorImpl
from
.common
import
register_distributed_operator_impl_container
from
.common
import
register_distributed_operator_impl
from
.common
import
set_comm_op_dist_attr_for_program
from
.dist_default
import
DistributedDefaultImpl0
from
..reshard
import
Resharder
from
..process_group
import
new_process_group
from
..utils
import
is_dim_shard
,
is_dim_replicate
,
_get_corresponding_rank
from
..utils
import
compute_compatible_dim_mapping
,
set_dist_op_desc_original_id
,
_get_comm_group
from
..dist_attribute
import
TensorDistributedAttribute
,
OperatorDistributedAttribute
from
paddle.fluid
import
core
,
unique_name
from
paddle.fluid.framework
import
Operator
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
,
check_dtype
class
DistributedPNorm
(
DistributedOperatorImplContainer
):
def
__init__
(
self
,
op_type
):
super
(
DistributedPNorm
,
self
).
__init__
(
op_type
)
register_distributed_operator_impl_container
(
DistributedPNorm
(
"p_norm"
))
def
_insert_fill_constant_op
(
block
,
op_role
):
"""Insert fill constant op into block at the given index."""
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
with
paddle
.
static
.
program_guard
(
block
.
program
):
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
"int32"
)
inputs
=
{}
attrs
=
{
'force_cpu'
:
False
}
attrs
[
'str_value'
]
=
str
(
int
(
"1"
))
attrs
[
'value'
]
=
int
(
"1"
)
attrs
[
'dtype'
]
=
out
.
dtype
attrs
[
'op_role'
]
=
op_role
utils
.
get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
[
0
],
op_type
=
'fill_constant'
)
fill_constant_op
=
block
.
append_op
(
type
=
'fill_constant'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
[
out
]},
attrs
=
attrs
)
out
.
stop_gradient
=
True
return
out
,
fill_constant_op
# Row Parallel
class
DistributedPNormImpl
(
DistributedOperatorImpl
):
def
__init__
(
self
,
name
):
super
(
DistributedPNormImpl
,
self
).
__init__
(
name
)
self
.
_forward_implemented
=
True
self
.
_backward_implemented
=
True
def
is_input_compatible
(
self
,
dist_op
):
op_desc
=
dist_op
.
serial_op
.
desc
op_dist_attr
=
dist_op
.
dist_attr
x_name
=
op_desc
.
input
(
'X'
)[
0
]
x_dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
x_name
)
if
is_dim_replicate
(
x_dims_mapping
[
0
]):
return
False
# Other dimensions must be replicate except the batch dimension
for
mapping
in
x_dims_mapping
[
1
:]:
if
is_dim_shard
(
mapping
):
return
False
return
True
def
is_output_compatible
(
self
,
dist_op
):
return
True
def
is_compatible
(
self
,
dist_op
):
if
(
not
self
.
is_input_compatible
(
dist_op
))
or
\
(
not
self
.
is_output_compatible
(
dist_op
)):
return
False
return
True
def
is_auto_compatible
(
self
,
dist_op
):
if
(
not
self
.
is_input_compatible
(
dist_op
))
or
\
(
not
self
.
is_output_compatible
(
dist_op
))
or
\
(
not
self
.
is_compatible
(
dist_op
)):
return
False
return
True
def
update_dims_mapping
(
self
,
dist_op
):
changed
=
False
op_desc
=
dist_op
.
serial_op
.
desc
op_dist_attr
=
dist_op
.
dist_attr
batch_dim_mappings
=
[]
for
arg_name
in
op_desc
.
input_arg_names
():
dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
arg_name
)
if
len
(
dims_mapping
)
>=
1
:
batch_dim_mappings
.
append
(
dims_mapping
[
0
])
for
arg_name
in
op_desc
.
output_arg_names
():
dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
arg_name
)
if
len
(
dims_mapping
)
>=
1
:
batch_dim_mappings
.
append
(
dims_mapping
[
0
])
compatible_dim_mapping
=
compute_compatible_dim_mapping
(
batch_dim_mappings
)
assert
compatible_dim_mapping
is
not
None
,
"There is no compatible dim mapping."
for
arg_name
in
op_desc
.
input_arg_names
():
dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
arg_name
)
if
len
(
dims_mapping
)
>=
1
and
compatible_dim_mapping
!=
dims_mapping
[
0
]:
dims_mapping
[
0
]
=
compatible_dim_mapping
changed
=
True
for
arg_name
in
op_desc
.
output_arg_names
():
dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
arg_name
)
if
len
(
dims_mapping
)
>=
1
and
compatible_dim_mapping
!=
dims_mapping
[
0
]:
dims_mapping
[
0
]
=
compatible_dim_mapping
changed
=
True
return
changed
@
staticmethod
def
forward
(
ctx
,
*
args
,
**
kwargs
):
dist_op_context
=
ctx
.
dist_op_context
main_block
=
dist_op_context
.
work_block
src_op
=
dist_op_context
.
cur_src_op
rank_id
=
dist_op_context
.
rank_id
op_dist_attr
=
ctx
.
get_op_dist_attr_for_program
(
src_op
)
assert
op_dist_attr
is
not
None
# check validation of inputs / outputs
for
input_name
in
src_op
.
desc
.
input_names
():
assert
input_name
in
kwargs
,
"input [{}] is not given"
.
format
(
input_name
)
assert
len
(
kwargs
[
input_name
])
==
len
(
src_op
.
desc
.
input
(
input_name
)
),
"number of tensor for input [{}] is not match"
.
format
(
input_name
)
for
output_name
in
src_op
.
desc
.
output_names
():
assert
output_name
in
kwargs
,
"input [{}] is not given"
.
format
(
output_name
)
assert
len
(
kwargs
[
output_name
])
==
len
(
src_op
.
desc
.
output
(
output_name
)
),
"number of tensor for input [{}] is not match"
.
format
(
output_name
)
if
rank_id
not
in
op_dist_attr
.
process_mesh
.
processes
:
rank_id
=
_get_corresponding_rank
(
ctx
,
op_dist_attr
.
process_mesh
,
rank_id
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
in_dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
X_var
.
name
)
for
axis
in
range
(
len
(
in_dims_mapping
)):
if
in_dims_mapping
[
axis
]
!=
-
1
:
break
process_mesh_shape
=
op_dist_attr
.
process_mesh
.
topology
process_mesh_group
=
op_dist_attr
.
process_mesh
.
processes
group_ranks
=
_get_comm_group
(
process_mesh_group
,
process_mesh_shape
,
axis
,
rank_id
)
group
=
new_process_group
(
group_ranks
)
check_variable_and_dtype
(
X_var
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'norm'
)
check_dtype
(
X_var
.
dtype
,
'dtype'
,
[
'float16'
,
'float32'
,
'float64'
],
'norm'
)
# 1. insert barrier op
ref_process_mesh
=
op_dist_attr
.
process_mesh
constant_out_dims_mapping
=
[
-
1
]
fill_constant_out
,
fill_constant_op
=
_insert_fill_constant_op
(
main_block
,
src_op
.
attr
(
'op_role'
))
# set fill_constant_out tensor dist_attr
constant_out_dist_attr
=
TensorDistributedAttribute
()
constant_out_dist_attr
.
process_mesh
=
ref_process_mesh
constant_out_dist_attr
.
dims_mapping
=
constant_out_dims_mapping
ctx
.
set_tensor_dist_attr_for_program
(
fill_constant_out
,
constant_out_dist_attr
)
# set fill_constant op dist_attr
constant_op_dist_attr
=
OperatorDistributedAttribute
()
constant_op_dist_attr
.
process_mesh
=
ref_process_mesh
constant_op_dist_attr
.
set_output_dims_mapping
(
fill_constant_out
.
name
,
constant_out_dims_mapping
)
ctx
.
set_op_dist_attr_for_program
(
fill_constant_op
,
constant_op_dist_attr
)
barrier_op
=
main_block
.
append_op
(
type
=
'barrier'
,
inputs
=
{
'X'
:
[
fill_constant_out
]},
outputs
=
{
'Out'
:
[
fill_constant_out
]},
attrs
=
{
'ring_id'
:
group
.
id
})
# set barrier op dist attr
set_comm_op_dist_attr_for_program
(
barrier_op
,
ref_process_mesh
,
constant_out_dist_attr
,
ctx
)
# 2. insert c_allgather op
# create c_allgather output var
allgather_out
=
main_block
.
create_var
(
name
=
"."
.
join
([
"c_allgather"
,
X_var
.
name
]),
dtype
=
X_var
.
dtype
,
shape
=
X_var
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
X_var
.
stop_gradient
)
# set allgather_out tensor dist_attr
allgather_out_dist_attr
=
TensorDistributedAttribute
()
allgather_out_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
allgather_out_dist_attr
.
dims_mapping
=
[
-
1
for
i
in
range
(
len
(
allgather_out
.
shape
))
]
ctx
.
set_tensor_dist_attr_for_program
(
allgather_out
,
allgather_out_dist_attr
)
c_allgather_op
=
main_block
.
append_op
(
type
=
'c_allgather'
,
inputs
=
{
'X'
:
[
X_var
]},
outputs
=
{
'Out'
:
[
allgather_out
]},
attrs
=
{
'ring_id'
:
group
.
id
,
'use_calc_stream'
:
True
,
'nranks'
:
group
.
nranks
,
'op_role'
:
src_op
.
attr
(
'op_role'
)
})
# set c_allgather op dist_attr
allgather_op_dist_attr
=
OperatorDistributedAttribute
()
allgather_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
allgather_op_dist_attr
.
set_input_dims_mapping
(
X_var
.
name
,
in_dims_mapping
)
allgather_op_dist_attr
.
set_output_dims_mapping
(
allgather_out
.
name
,
allgather_out_dist_attr
.
dims_mapping
)
ctx
.
set_op_dist_attr_for_program
(
c_allgather_op
,
allgather_op_dist_attr
)
# 3. copy p_norm op desc and reset input name
# rename input
kwargs
[
'X'
]
=
[
allgather_out
.
name
]
# replicate op in dist program
dist_op_desc
=
main_block
.
desc
.
append_op
()
dist_op_desc
.
copy_from
(
src_op
.
desc
)
set_dist_op_desc_original_id
(
dist_op_desc
,
src_op
.
desc
,
ctx
)
for
input_name
in
src_op
.
desc
.
input_names
():
dist_op_desc
.
set_input
(
input_name
,
kwargs
[
input_name
])
for
output_name
in
src_op
.
desc
.
output_names
():
dist_op_desc
.
set_output
(
output_name
,
kwargs
[
output_name
])
pnorm_op
=
Operator
(
main_block
,
dist_op_desc
)
op_dist_attr
.
set_input_dims_mapping
(
allgather_out
.
name
,
allgather_out_dist_attr
.
dims_mapping
)
ctx
.
set_op_dist_attr_for_program
(
pnorm_op
,
op_dist_attr
)
main_block
.
_sync_with_cpp
()
@
staticmethod
def
backward
(
ctx
,
*
args
,
**
kwargs
):
dist_op_context
=
ctx
.
dist_op_context
main_block
=
dist_op_context
.
work_block
backward_op
=
dist_op_context
.
cur_src_op
rank_id
=
dist_op_context
.
rank_id
op_dist_attr
=
ctx
.
get_op_dist_attr_for_program
(
backward_op
)
assert
op_dist_attr
is
not
None
# check validation of inputs / outputs
for
input_name
in
backward_op
.
desc
.
input_names
():
assert
input_name
in
kwargs
,
"input [{}] is not given"
.
format
(
input_name
)
assert
len
(
kwargs
[
input_name
])
==
len
(
backward_op
.
desc
.
input
(
input_name
)
),
"number of tensor for input [{}] is not match"
.
format
(
input_name
)
for
output_name
in
backward_op
.
desc
.
output_names
():
assert
output_name
in
kwargs
,
"input [{}] is not given"
.
format
(
output_name
)
assert
len
(
kwargs
[
output_name
])
==
len
(
backward_op
.
desc
.
output
(
output_name
)
),
"number of tensor for input [{}] is not match"
.
format
(
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_grad_var
=
main_block
.
var
(
kwargs
[
'X@GRAD'
][
0
])
# 1. copy p_norm_grad op and reset input name and output name
new_kwargs
=
copy
.
deepcopy
(
kwargs
)
new_kwargs
[
'X'
]
=
[
"."
.
join
([
"c_allgather"
,
X_var
.
name
])]
new_X_var
=
main_block
.
var
(
new_kwargs
[
'X'
][
0
])
new_X_grad
=
main_block
.
create_var
(
name
=
"."
.
join
([
"c_allgather"
,
X_grad_var
.
name
]),
dtype
=
X_grad_var
.
dtype
,
shape
=
new_X_var
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
X_grad_var
.
stop_gradient
)
new_kwargs
[
'X@GRAD'
]
=
[
new_X_grad
.
name
]
new_X_var_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
new_X_var
)
ctx
.
set_tensor_dist_attr_for_program
(
new_X_grad
,
new_X_var_dist_attr
)
# replicate op in dist program with new kwargs
dist_op_desc
=
main_block
.
desc
.
append_op
()
dist_op_desc
.
copy_from
(
backward_op
.
desc
)
# Refer to the related dist op
set_dist_op_desc_original_id
(
dist_op_desc
,
backward_op
.
desc
,
ctx
)
for
input_name
in
backward_op
.
desc
.
input_names
():
dist_op_desc
.
set_input
(
input_name
,
new_kwargs
[
input_name
])
for
output_name
in
backward_op
.
desc
.
output_names
():
dist_op_desc
.
set_output
(
output_name
,
new_kwargs
[
output_name
])
p_norm_grad_op
=
Operator
(
main_block
,
dist_op_desc
)
op_dist_attr
.
set_input_dims_mapping
(
new_X_var
.
name
,
new_X_var_dist_attr
.
dims_mapping
)
op_dist_attr
.
set_output_dims_mapping
(
new_X_grad
.
name
,
new_X_var_dist_attr
.
dims_mapping
)
ctx
.
set_op_dist_attr_for_program
(
p_norm_grad_op
,
op_dist_attr
)
main_block
.
_sync_with_cpp
()
# 2. insert slice op
process_mesh_shape
=
op_dist_attr
.
process_mesh
.
topology
process_mesh_group
=
op_dist_attr
.
process_mesh
.
processes
dims_mapping
=
[
0
]
+
[
-
1
for
_
in
range
(
len
(
new_X_grad
.
shape
)
-
1
)]
partition_idx
=
Resharder
.
compute_partition_index
(
rank_id
,
new_X_grad
.
shape
,
dims_mapping
,
process_mesh_shape
,
process_mesh_group
)
slice_starts
=
[]
slice_ends
=
[]
slices_axes
=
[]
for
idx
,
item
in
enumerate
(
partition_idx
):
slice_starts
.
append
(
item
[
0
])
slice_ends
.
append
(
item
[
1
])
slices_axes
.
append
(
idx
)
infer_flags
=
list
(
1
for
i
in
range
(
len
(
slices_axes
)))
attrs
=
{
"axes"
:
slices_axes
,
"starts"
:
slice_starts
,
"ends"
:
slice_ends
,
"infer_flags"
:
infer_flags
,
"op_role"
:
backward_op
.
attr
(
'op_role'
)
}
slice_op
=
main_block
.
append_op
(
type
=
'slice'
,
inputs
=
{
'Input'
:
[
new_X_grad
]},
outputs
=
{
'Out'
:
[
X_grad_var
]},
attrs
=
attrs
)
X_grad_var_dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
X_grad_var
.
name
)
slice_op_dist_attr
=
OperatorDistributedAttribute
()
slice_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
slice_op_dist_attr
.
set_input_dims_mapping
(
new_X_grad
.
name
,
new_X_var_dist_attr
.
dims_mapping
)
slice_op_dist_attr
.
set_output_dims_mapping
(
X_grad_var
.
name
,
X_grad_var_dims_mapping
)
ctx
.
set_op_dist_attr_for_program
(
slice_op
,
slice_op_dist_attr
)
main_block
.
_sync_with_cpp
()
register_distributed_operator_impl
(
"p_norm"
,
DistributedPNormImpl
(
"row_parallel"
))
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
5c91010d
...
@@ -18,6 +18,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
...
@@ -18,6 +18,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules
(
test_recorder MODULES test_recorder ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_recorder MODULES test_recorder ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_trial MODULES test_trial ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_trial MODULES test_trial ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_new_cost_model MODULES test_new_cost_model ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_new_cost_model MODULES test_new_cost_model ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_dist_pnorm MODULES test_dist_pnorm ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_dist_slice MODULES test_dist_slice ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_dist_slice MODULES test_dist_slice ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_cluster MODULES test_cluster ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_cluster MODULES test_cluster ENVS
${
dist_ENVS
}
)
endif
()
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_dist_pnorm.py
0 → 100644
浏览文件 @
5c91010d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
paddle.distributed.auto_parallel
as
auto
from
paddle.fluid
import
program_guard
from
paddle.fluid.backward
import
append_backward
from
paddle.distributed.auto_parallel.utils
import
print_program_with_dist_attr
paddle
.
enable_static
()
def
make_program_dp2
():
main_program
=
paddle
.
fluid
.
Program
()
start_program
=
paddle
.
fluid
.
Program
()
with
paddle
.
static
.
program_guard
(
main_program
,
start_program
):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
4
,
5
,
6
],
dtype
=
'float32'
)
x
.
stop_gradient
=
False
auto
.
shard_tensor
(
x
,
dist_attr
=
{
"process_mesh"
:
auto
.
ProcessMesh
([
0
,
1
]),
"dims_mapping"
:
[
0
,
-
1
,
-
1
]
})
tmp_0
=
paddle
.
norm
(
x
,
p
=
2
)
return
main_program
,
start_program
,
tmp_0
def
make_program_serial
():
main_program
=
paddle
.
fluid
.
Program
()
start_program
=
paddle
.
fluid
.
Program
()
with
paddle
.
static
.
program_guard
(
main_program
,
start_program
):
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
4
,
5
,
6
],
dtype
=
'float32'
)
x
.
stop_gradient
=
False
auto
.
shard_tensor
(
x
,
dist_attr
=
{
"process_mesh"
:
auto
.
ProcessMesh
([
0
]),
"dims_mapping"
:
[
-
1
,
-
1
,
-
1
]
})
tmp_0
=
paddle
.
norm
(
x
,
p
=
2
)
return
main_program
,
start_program
,
tmp_0
def
parallelizer
(
program_func
,
rank
):
from
paddle.distributed.auto_parallel.completion
import
Completer
from
paddle.distributed.auto_parallel.partitioner
import
Partitioner
from
paddle.distributed.auto_parallel.dist_context
import
DistributedContext
main_program
,
start_program
,
loss
=
program_func
()
dist_context
=
DistributedContext
()
completer
=
Completer
(
dist_context
)
completer
.
complete_forward_annotation
(
main_program
)
dist_context
.
block_state
.
parse_forward_blocks
(
main_program
)
with
program_guard
(
main_program
,
start_program
):
params_grads
=
append_backward
(
loss
,
distop_context
=
dist_context
.
dist_op_context
)
completer
.
complete_backward_annotation
(
main_program
)
dist_context
.
block_state
.
parse_backward_blocks
(
main_program
)
partitioner
=
Partitioner
(
dist_context
,
rank
)
dist_main_prog
,
_
,
_
=
partitioner
.
partition
(
main_program
,
start_program
,
[])
return
dist_main_prog
,
dist_context
class
TestDistPNorm
(
unittest
.
TestCase
):
def
test_dist_pnorm_dp2
(
self
):
for
rank
in
range
(
2
):
dist_main_prog
,
dist_context
=
parallelizer
(
make_program_dp2
,
rank
)
ops
=
dist_main_prog
.
global_block
().
ops
op_types
=
[]
for
op
in
ops
:
op_types
.
append
(
op
.
type
)
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
op
)
if
op
.
type
==
"p_norm"
:
assert
op_dist_attr
.
impl_type
==
"p_norm"
if
op
.
type
in
[
"p_norm"
,
"p_norm_grad"
]:
for
input_attr
in
op_dist_attr
.
inputs_dist_attrs
.
values
():
assert
set
(
input_attr
.
dims_mapping
)
==
set
([
-
1
])
for
output_attr
in
op_dist_attr
.
outputs_dist_attrs
.
values
():
assert
set
(
output_attr
.
dims_mapping
)
==
set
([
-
1
])
if
op
.
type
==
'c_allgather'
:
for
input_attr
in
op_dist_attr
.
inputs_dist_attrs
.
values
():
assert
input_attr
.
dims_mapping
[
0
]
==
0
assert
set
(
input_attr
.
dims_mapping
[
1
:])
==
set
([
-
1
])
for
output_attr
in
op_dist_attr
.
outputs_dist_attrs
.
values
():
assert
set
(
output_attr
.
dims_mapping
)
==
set
([
-
1
])
if
op
.
type
==
'slice'
:
for
input_attr
in
op_dist_attr
.
inputs_dist_attrs
.
values
():
assert
set
(
input_attr
.
dims_mapping
)
==
set
([
-
1
])
for
output_attr
in
op_dist_attr
.
outputs_dist_attrs
.
values
():
assert
output_attr
.
dims_mapping
[
0
]
==
0
assert
set
(
output_attr
.
dims_mapping
[
1
:])
==
set
([
-
1
])
assert
op_types
==
[
"fill_constant"
,
"barrier"
,
"c_allgather"
,
"p_norm"
,
"fill_constant"
,
"p_norm_grad"
,
"slice"
]
def
test_dist_pnorm_serial
(
self
):
dist_main_prog
,
dist_context
=
parallelizer
(
make_program_serial
,
0
)
ops
=
dist_main_prog
.
global_block
().
ops
for
op
in
ops
:
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
op
)
assert
op_dist_attr
.
impl_type
==
"default"
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录