未验证 提交 5c2852a3 编写于 作者: L liuyuhui 提交者: GitHub

[API 2.0: doc] transfer from paddle.fluid.layers.assign() into creation.py (#27999) (#28074)

* transfer from paddle.fluid.layers.assign() into creation.py,test=develop

* fix ut fail,add support for paddle.assign,test=develop

* fix,test=develop

* fix UT coverage,test=coverage

* fix UT fail,test=coverage

* fix doc,test=develop
上级 6bb6cb27
...@@ -77,6 +77,7 @@ from .tensor.creation import tril #DEFINE_ALIAS ...@@ -77,6 +77,7 @@ from .tensor.creation import tril #DEFINE_ALIAS
from .tensor.creation import meshgrid #DEFINE_ALIAS from .tensor.creation import meshgrid #DEFINE_ALIAS
from .tensor.creation import empty #DEFINE_ALIAS from .tensor.creation import empty #DEFINE_ALIAS
from .tensor.creation import empty_like #DEFINE_ALIAS from .tensor.creation import empty_like #DEFINE_ALIAS
from .tensor.creation import assign #DEFINE_ALIAS
from .tensor.linalg import matmul #DEFINE_ALIAS from .tensor.linalg import matmul #DEFINE_ALIAS
from .tensor.linalg import dot #DEFINE_ALIAS from .tensor.linalg import dot #DEFINE_ALIAS
# from .tensor.linalg import einsum #DEFINE_ALIAS # from .tensor.linalg import einsum #DEFINE_ALIAS
...@@ -262,7 +263,6 @@ from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS ...@@ -262,7 +263,6 @@ from .fluid.framework import in_dygraph_mode as in_dynamic_mode #DEFINE_ALIAS
from .fluid.dygraph.base import no_grad_ as no_grad #DEFINE_ALIAS from .fluid.dygraph.base import no_grad_ as no_grad #DEFINE_ALIAS
from .fluid.layers import crop_tensor as crop #DEFINE_ALIAS from .fluid.layers import crop_tensor as crop #DEFINE_ALIAS
from . import jit from . import jit
from . import static from . import static
from . import amp from . import amp
......
...@@ -17,6 +17,7 @@ from __future__ import print_function ...@@ -17,6 +17,7 @@ from __future__ import print_function
import op_test import op_test
import numpy as np import numpy as np
import unittest import unittest
import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -99,5 +100,81 @@ class TestAssignOpError(unittest.TestCase): ...@@ -99,5 +100,81 @@ class TestAssignOpError(unittest.TestCase):
self.assertRaises(TypeError, fluid.layers.assign, x5) self.assertRaises(TypeError, fluid.layers.assign, x5)
class TestAssignOApi(unittest.TestCase):
def test_assign_LoDTensorArray(self):
main_program = Program()
startup_program = Program()
with program_guard(main_program):
x = fluid.data(name='x', shape=[100, 10], dtype='float32')
x.stop_gradient = False
y = fluid.layers.fill_constant(
shape=[100, 10], dtype='float32', value=1)
z = fluid.layers.elementwise_add(x=x, y=y)
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
init_array = fluid.layers.array_write(x=z, i=i)
array = paddle.assign(init_array)
sums = fluid.layers.array_read(array=init_array, i=i)
mean = fluid.layers.mean(sums)
append_backward(mean)
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
feed_x = np.random.random(size=(100, 10)).astype('float32')
ones = np.ones((100, 10)).astype('float32')
feed_add = feed_x + ones
res = exe.run(main_program,
feed={'x': feed_x},
fetch_list=[sums.name, x.grad_name])
self.assertTrue(np.allclose(res[0], feed_add))
self.assertTrue(np.allclose(res[1], ones / 1000.0))
def test_assign_NumpyArray(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.bool)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
def test_assign_NumpyArray1(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.float32)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
def test_assign_NumpyArray2(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.int32)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
def test_assign_NumpyArray3(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.int64)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
class TestAssignOpErrorApi(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The type of input must be Variable or numpy.ndarray.
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
self.assertRaises(TypeError, paddle.assign, x1)
# When the type of input is Variable, the dtype of input must be float16, float32, float64, int32, int64, bool.
x3 = fluid.layers.data(name='x3', shape=[4], dtype="uint8")
self.assertRaises(TypeError, paddle.assign, x3)
# When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
x4 = np.array([[2.5, 2.5]], dtype='float64')
self.assertRaises(TypeError, paddle.assign, x4)
x5 = np.array([[2.5, 2.5]], dtype='uint8')
self.assertRaises(TypeError, paddle.assign, x5)
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static()
unittest.main() unittest.main()
...@@ -47,7 +47,8 @@ __all__ = [ ...@@ -47,7 +47,8 @@ __all__ = [
'empty_like', 'empty_like',
'triu', 'triu',
'tril', 'tril',
'meshgrid' 'meshgrid',
'assign',
] ]
...@@ -1106,3 +1107,77 @@ def empty_like(x, dtype=None, name=None): ...@@ -1106,3 +1107,77 @@ def empty_like(x, dtype=None, name=None):
stop_gradient=True) stop_gradient=True)
out.stop_gradient = True out.stop_gradient = True
return out return out
def assign(x, output=None):
"""
The OP copies the :attr:`x` to the :attr:`output`.
Parameters:
x (Tensor|numpy.ndarray): A tensor or numpy ndarray, its data type supports
float16, float32, float64, int32 and int64.
output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
be created as :attr:`output`. Default: None.
Returns:
Tensor: A tensor with the same shape, data type and value as :attr:`x`.
Examples:
.. code-block:: python
import paddle
import numpy as np
data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
array = np.array([[1, 1],
[3, 4],
[1, 3]]).astype(np.int64)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
"""
helper = LayerHelper('assign', **locals())
check_type(x, 'x', (Variable, numpy.ndarray), 'assign')
if isinstance(x, Variable):
check_dtype(
x.dtype, 'x',
['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
'assign', '(When the type of input in assign is Variable.)')
if output is None:
output = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='assign', inputs={'X': [x]}, outputs={'Out': [output]})
elif isinstance(x, numpy.ndarray):
dtype = convert_np_dtype_to_dtype_(x.dtype)
if dtype == VarDesc.VarType.BOOL:
value_name = "bool_values"
values = [bool(v) for v in x.flat]
elif dtype == VarDesc.VarType.FP32:
value_name = "fp32_values"
values = [float(v) for v in x.flat]
elif dtype == VarDesc.VarType.INT32:
value_name = "int32_values"
values = [int(v) for v in x.flat]
elif dtype == VarDesc.VarType.INT64:
value_name = "int64_values"
values = [int(v) for v in x.flat]
else:
raise TypeError(
"When the type of 'x' in assign is numpy.ndarray, "
"the data type of 'x' must be bool, float32, int32 or int64, but "
"received %s." % convert_dtype(dtype))
if x.size > 1024 * 1024:
raise ValueError("The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it")
if output is None:
output = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='assign_value',
outputs={'Out': [output]},
attrs={'dtype': dtype,
'shape': list(x.shape),
value_name: values})
return output
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册