Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5c0bfc18
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5c0bfc18
编写于
10月 18, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
10月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT]Rewrite strided_slice converter using shape tensor (#46819)
* Rewrite strided_slice converter using shape tensor * clean code
上级
35d5db36
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
230 addition
and
116 deletion
+230
-116
paddle/fluid/inference/tensorrt/convert/strided_slice_op.cc
paddle/fluid/inference/tensorrt/convert/strided_slice_op.cc
+134
-115
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+12
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_strided_slice.py
.../unittests/ir/inference/test_trt_convert_strided_slice.py
+84
-1
未找到文件。
paddle/fluid/inference/tensorrt/convert/strided_slice_op.cc
浏览文件 @
5c0bfc18
...
...
@@ -14,33 +14,23 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
proto
{
class
OpDesc
;
}
// namespace proto
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* Stack converter from fluid to tensorRT.
*/
class
StridedSliceOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert fluid StridedSlice op to tensorrt Slice layer"
;
VLOG
(
4
)
<<
"convert strided_slice op to tensorrt layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Input"
)[
0
]);
nvinfer1
::
Dims
input_dims
=
input
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
// phi only allow axes[i] >= 0 && <rank, so we need not deal with minus
// axes[i]
std
::
vector
<
int
>
axes
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"axes"
));
std
::
vector
<
int
>
starts
=
...
...
@@ -49,119 +39,148 @@ class StridedSliceOpConverter : public OpConverter {
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"ends"
));
std
::
vector
<
int
>
strides
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"strides"
));
int
axes_size
=
axes
.
size
();
nvinfer1
::
Dims
start
;
nvinfer1
::
Dims
stride
;
nvinfer1
::
Dims
size
;
start
.
nbDims
=
input_dims
.
nbDims
;
stride
.
nbDims
=
input_dims
.
nbDims
;
size
.
nbDims
=
input_dims
.
nbDims
;
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
start
.
d
[
i
]
=
0
;
stride
.
d
[
i
]
=
1
;
size
.
d
[
i
]
=
input_dims
.
d
[
i
];
}
std
::
vector
<
int
>
decrease_axises
=
PADDLE_GET_CONST
(
std
::
vector
<
int
>
,
op_desc
.
GetAttr
(
"decrease_axis"
));
auto
input_dims
=
input
->
getDimensions
();
if
(
!
engine_
->
with_dynamic_shape
())
{
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
start
.
d
[
axes
[
i
]
-
1
]
=
starts
[
i
];
// notice that input shape is [CHW] without batch axis when input has
// static shape
for
(
size_t
i
=
input_dims
.
nbDims
;
i
>
0
;
i
--
)
{
input_dims
.
d
[
i
]
=
input_dims
.
d
[
i
-
1
];
}
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
stride
.
d
[
axes
[
i
]
-
1
]
=
strides
[
i
];
}
for
(
int
i
=
0
;
i
<
axes_size
;
++
i
)
{
int
dim
=
size
.
d
[
axes
[
i
]
-
1
];
if
(
dim
>
0
)
{
int
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
dim
)
:
starts
[
i
];
int
end
=
ends
[
i
]
<
0
?
(
ends
[
i
]
+
dim
)
:
ends
[
i
];
int
stride
=
std
::
abs
(
strides
[
i
]);
start
=
std
::
max
(
start
,
0
);
end
=
std
::
max
(
end
,
0
);
end
=
std
::
min
(
end
,
dim
);
size
.
d
[
axes
[
i
]
-
1
]
=
(
std
::
abs
(
end
-
start
)
+
stride
-
1
)
/
stride
;
input_dims
.
d
[
0
]
=
1
;
// fake batchsize, not useful here
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
if
(
starts
[
i
]
<
0
)
{
starts
[
i
]
=
std
::
max
(
starts
[
i
]
+
input_dims
.
d
[
axes
[
i
]],
0
);
}
if
(
ends
[
i
]
<
0
)
{
ends
[
i
]
=
std
::
max
(
ends
[
i
]
+
input_dims
.
d
[
axes
[
i
]],
0
);
}
ends
[
i
]
=
std
::
min
(
ends
[
i
],
input_dims
.
d
[
axes
[
i
]]);
PADDLE_ENFORCE_GT
(
ends
[
i
],
starts
[
i
],
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received ends = %d, starts = %d."
,
ends
[
i
],
starts
[
i
]));
}
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
start
,
size
,
stride
);
RreplenishLayerAndOutput
(
layer
,
"strided_slice"
,
{
output_name
},
test_mode
);
}
else
{
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
start
.
d
[
axes
[
i
]]
=
starts
[
i
];
}
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
auto
nchw_input_dims
=
input
->
getDimensions
();
nvinfer1
::
Dims
trt_start_dims
;
trt_start_dims
.
nbDims
=
nchw_input_dims
.
nbDims
;
memset
(
trt_start_dims
.
d
,
0
,
sizeof
(
int32_t
)
*
nchw_input_dims
.
nbDims
);
nvinfer1
::
Dims
trt_size_dims
=
trt_start_dims
;
nvinfer1
::
Dims
trt_end_dims
=
trt_start_dims
;
nvinfer1
::
Dims
trt_step_dims
=
trt_start_dims
;
for
(
int
i
=
0
;
i
<
trt_step_dims
.
nbDims
;
i
++
)
trt_step_dims
.
d
[
i
]
=
1
;
// input : [N,C,H,W]
bool
has_neg_indices
=
false
;
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
int
trt_axis
=
axes
[
i
];
trt_start_dims
.
d
[
trt_axis
]
=
starts
[
i
];
trt_end_dims
.
d
[
trt_axis
]
=
ends
[
i
];
trt_step_dims
.
d
[
axes
[
i
]]
=
strides
[
i
];
if
(
starts
[
i
]
<
0
||
ends
[
i
]
<
0
)
has_neg_indices
=
true
;
}
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
stride
.
d
[
axes
[
i
]]
=
strides
[
i
];
auto
*
shape_tensor
=
Shape
(
input
);
auto
*
start_tensor
=
Add1DConstantLayer
(
trt_start_dims
);
if
(
has_neg_indices
)
{
start_tensor
=
FixNegIndices
(
shape_tensor
,
start_tensor
);
}
for
(
int
i
=
0
;
i
<
axes_size
;
++
i
)
{
int
dim
=
size
.
d
[
axes
[
i
]];
if
(
dim
>
0
)
{
int
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
dim
)
:
starts
[
i
];
int
end
=
ends
[
i
]
<
0
?
(
ends
[
i
]
+
dim
)
:
ends
[
i
];
int
stride
=
std
::
abs
(
strides
[
i
]);
start
=
std
::
max
(
start
,
0
);
end
=
std
::
max
(
end
,
0
);
end
=
std
::
min
(
end
,
dim
);
size
.
d
[
axes
[
i
]]
=
(
std
::
abs
(
end
-
start
)
+
stride
-
1
)
/
stride
;
}
std
::
vector
<
nvinfer1
::
ITensor
*>
end_vec_tensor
;
for
(
int
i
=
0
;
i
<
trt_end_dims
.
nbDims
;
i
++
)
{
end_vec_tensor
.
push_back
(
GetEleTensorOfShape
(
shape_tensor
,
i
));
}
auto
create_weights
=
[
&
](
const
std
::
vector
<
int
>&
data
,
const
std
::
string
&
type
)
->
int
*
{
std
::
unique_ptr
<
phi
::
DenseTensor
>
tmp_tensor
(
new
phi
::
DenseTensor
());
int
data_size
=
data
.
size
();
tmp_tensor
->
Resize
({
data_size
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
data_size
;
i
++
)
{
tmp_data
[
i
]
=
data
[
i
];
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
int
trt_axis
=
axes
[
i
];
if
(
ends
[
i
]
>=
0
)
{
end_vec_tensor
[
trt_axis
]
=
Add1DConstantLayer
(
ends
[
i
]);
}
else
{
end_vec_tensor
[
trt_axis
]
=
Sum
(
end_vec_tensor
[
trt_axis
],
Add1DConstantLayer
(
ends
[
i
]));
}
engine_
->
SetWeights
(
output_name
+
"_add_slice_op_"
+
type
,
std
::
move
(
tmp_tensor
));
return
tmp_data
;
};
std
::
vector
<
int
>
const_weight
(
input_dims
.
nbDims
,
0
);
for
(
int
i
=
0
;
i
<
axes_size
;
i
++
)
{
int
dim
=
input_dims
.
d
[
axes
[
i
]];
int
start
=
starts
[
i
]
<
0
?
(
starts
[
i
]
+
dim
)
:
starts
[
i
];
int
end
=
ends
[
i
]
<
0
?
(
ends
[
i
]
+
dim
)
:
ends
[
i
];
int
stride
=
std
::
abs
(
strides
[
i
]);
start
=
std
::
max
(
start
,
0
);
end
=
std
::
max
(
end
,
0
);
end
=
std
::
min
(
end
,
dim
);
const_weight
[
axes
[
i
]]
=
dim
-
((
std
::
abs
(
end
-
start
)
+
stride
-
1
)
/
stride
);
}
int
*
weight_data
=
create_weights
(
const_weight
,
"size"
);
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kINT32
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
input_dims
.
nbDims
)};
int
input_dim_size
=
input_dims
.
nbDims
;
nvinfer1
::
Dims
input_shape
;
input_shape
.
nbDims
=
1
;
input_shape
.
d
[
0
]
=
input_dim_size
;
auto
const_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
input_shape
,
weight
.
get
());
auto
shape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shape
,
*
input
);
// slice layer
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
start
,
size
,
stride
);
// elementwise layer for get size tensor
auto
size_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
shape_layer
->
getOutput
(
0
),
*
const_layer
->
getOutput
(
0
),
nvinfer1
::
ElementWiseOperation
::
kSUB
);
layer
->
setInput
(
2
,
*
size_layer
->
getOutput
(
0
));
RreplenishLayerAndOutput
(
layer
,
"strided_slice"
,
{
output_name
},
test_mode
);
auto
*
size_tensor
=
Sub
(
start_tensor
,
Min
(
Concat
(
end_vec_tensor
),
shape_tensor
));
auto
zero_t
=
Add1DConstantLayer
(
std
::
vector
<
int
>
(
nchw_input_dims
.
nbDims
,
0
));
auto
step_tensor
=
Add1DConstantLayer
(
trt_step_dims
);
size_tensor
=
Sub
(
zero_t
,
FloorDiv
(
size_tensor
,
step_tensor
));
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
trt_start_dims
,
trt_size_dims
,
trt_step_dims
);
layer
->
setInput
(
1
,
*
start_tensor
);
layer
->
setInput
(
2
,
*
size_tensor
);
layer
->
setInput
(
3
,
*
step_tensor
);
if
(
decrease_axises
.
size
()
>
0
)
{
std
::
vector
<
int32_t
>
gather_indices
;
for
(
int
i
=
0
;
i
<
trt_size_dims
.
nbDims
;
i
++
)
{
if
(
decrease_axises
.
end
()
!=
std
::
find
(
decrease_axises
.
begin
(),
decrease_axises
.
end
(),
i
))
continue
;
gather_indices
.
push_back
(
i
);
}
if
(
gather_indices
.
empty
())
gather_indices
.
push_back
(
decrease_axises
[
0
]);
auto
real_size_tensor
=
Gather
(
size_tensor
,
gather_indices
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
layer
->
getOutput
(
0
));
layer
->
setInput
(
1
,
*
real_size_tensor
);
}
}
else
{
auto
chw_input_dims
=
input
->
getDimensions
();
nvinfer1
::
Dims
trt_start_dims
;
trt_start_dims
.
nbDims
=
chw_input_dims
.
nbDims
;
memset
(
trt_start_dims
.
d
,
0
,
sizeof
(
int32_t
)
*
chw_input_dims
.
nbDims
);
nvinfer1
::
Dims
trt_size_dims
=
chw_input_dims
;
nvinfer1
::
Dims
trt_step_dims
;
trt_step_dims
.
nbDims
=
chw_input_dims
.
nbDims
;
for
(
int
i
=
0
;
i
<
trt_step_dims
.
nbDims
;
i
++
)
trt_step_dims
.
d
[
i
]
=
1
;
// input : [C,H,W]
for
(
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
int
trt_axis
=
axes
[
i
]
-
1
;
trt_start_dims
.
d
[
trt_axis
]
=
starts
[
i
];
trt_size_dims
.
d
[
trt_axis
]
=
(
ends
[
i
]
-
starts
[
i
]
+
strides
[
i
]
-
1
)
/
strides
[
i
];
trt_step_dims
.
d
[
trt_axis
]
=
strides
[
i
];
}
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
input
,
trt_start_dims
,
trt_size_dims
,
trt_step_dims
);
nvinfer1
::
Dims
real_trt_size_dims
;
real_trt_size_dims
.
nbDims
=
0
;
if
(
decrease_axises
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
decrease_axises
.
size
();
i
++
)
{
decrease_axises
[
i
]
--
;
}
for
(
int
i
=
0
;
i
<
trt_size_dims
.
nbDims
;
i
++
)
{
if
(
decrease_axises
.
end
()
!=
std
::
find
(
decrease_axises
.
begin
(),
decrease_axises
.
end
(),
i
))
continue
;
real_trt_size_dims
.
d
[
real_trt_size_dims
.
nbDims
]
=
trt_size_dims
.
d
[
i
];
real_trt_size_dims
.
nbDims
++
;
}
if
(
real_trt_size_dims
.
nbDims
==
0
)
{
real_trt_size_dims
.
nbDims
=
1
;
real_trt_size_dims
.
d
[
0
]
=
1
;
}
auto
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
layer
->
getOutput
(
0
));
reshape_layer
->
setReshapeDimensions
(
real_trt_size_dims
);
layer
=
static_cast
<
nvinfer1
::
ILayer
*>
(
reshape_layer
);
}
}
RreplenishLayerAndOutput
(
layer
,
"strided_slice"
,
{
output_name
},
test_mode
);
}
};
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
5c0bfc18
...
...
@@ -495,6 +495,18 @@ class TensorRTEngineOp : public framework::OperatorBase {
// convert input and copy to TRT engine's buffer
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
phi
::
DenseTensor
>
(
scope
,
x
);
PADDLE_ENFORCE_GT
(
t
.
numel
(),
0
,
phi
::
errors
::
InvalidArgument
(
"The input tensor named %s of trt-subgraph must "
"have >0 elements, but now have %d elements. "
"It's likely that this tensor is connected to a Concat op inside "
"a trt-subgraph, "
"try to ues API to forbid this op into trt-subgraph."
,
x
,
t
.
numel
()));
// check the input_tensor
if
(
!
platform
::
is_gpu_place
(
t
.
place
()))
{
phi
::
DenseTensor
out
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_strided_slice.py
浏览文件 @
5c0bfc18
...
...
@@ -34,7 +34,7 @@ class TrtConvertStridedSliceTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
1
,
56
,
56
,
192
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
1
,
56
,
56
,
192
]).
astype
(
np
.
float32
)
for
axes
in
[[
1
,
2
]]:
for
starts
in
[[
1
,
1
]]:
...
...
@@ -130,5 +130,88 @@ class TrtConvertStridedSliceTest(TrtLayerAutoScanTest):
self
.
run_test
()
class
TrtConvertStridedSliceTest2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
1
,
56
,
56
,
192
]).
astype
(
np
.
float32
)
for
axes
in
[[
1
,
2
],
[
2
,
3
],
[
1
,
3
]]:
for
starts
in
[[
-
10
,
1
],
[
-
10
,
20
],
[
-
10
,
15
],
[
-
10
,
16
],
[
-
10
,
20
]]:
for
ends
in
[[
-
9
,
10000
],
[
-
9
,
-
1
],
[
-
9
,
40
]]:
for
decrease_axis
in
[[]]:
for
infer_flags
in
[[
1
,
1
]]:
for
strides
in
[[
2
,
2
]]:
dics
=
[{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
,
"decrease_axis"
:
[
axes
[
0
]],
"infer_flags"
:
infer_flags
,
"strides"
:
strides
}]
ops_config
=
[{
"op_type"
:
"strided_slice"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"slice_output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
},
outputs
=
[
"slice_output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
56
,
56
,
192
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
8
,
100
,
100
,
200
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
4
,
56
,
56
,
192
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
# for dynamic_shape
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录