Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5b7fd00d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5b7fd00d
编写于
9月 22, 2017
作者:
Z
Zhuoyuan
提交者:
GitHub
9月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4280 from Superjom/feature/recurrent_op_backward_fix
make RecurrentOp's backward compatible with framework
上级
5862667c
b545b5b8
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
57 addition
and
19 deletion
+57
-19
paddle/framework/operator.cc
paddle/framework/operator.cc
+2
-2
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+6
-7
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+4
-1
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+5
-6
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+1
-1
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+39
-2
未找到文件。
paddle/framework/operator.cc
浏览文件 @
5b7fd00d
...
@@ -60,8 +60,8 @@ std::string OperatorBase::Output(const std::string& name) const {
...
@@ -60,8 +60,8 @@ std::string OperatorBase::Output(const std::string& name) const {
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
string
&
name
)
const
{
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Op %s does not have output
%s"
,
type_
,
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Op %s does not have output
called %s"
,
name
);
type_
,
name
);
return
it
->
second
;
return
it
->
second
;
}
}
...
...
paddle/operators/recurrent_op.cc
浏览文件 @
5b7fd00d
...
@@ -80,7 +80,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
...
@@ -80,7 +80,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE_NOT_NULL
(
stepnet_
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"stepnet_ op has no outputs"
);
PADDLE_ENFORCE
(
!
(
*
stepnet_
)
->
Outputs
().
empty
(),
"net_op has no outputs"
);
if
(
seq_len_
>
step_scopes
->
size
())
{
if
(
seq_len_
>
step_scopes
->
size
())
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len_
;
++
i
)
{
for
(
size_t
i
=
step_scopes
->
size
();
i
<
seq_len_
;
++
i
)
{
...
@@ -129,8 +128,8 @@ const rnn::ArgumentName RecurrentOp::kArgName{
...
@@ -129,8 +128,8 @@ const rnn::ArgumentName RecurrentOp::kArgName{
"memories"
,
"pre_memories"
,
"boot_memories"
};
"memories"
,
"pre_memories"
,
"boot_memories"
};
const
rnn
::
ArgumentName
RecurrentGradientOp
::
kArgName
{
const
rnn
::
ArgumentName
RecurrentGradientOp
::
kArgName
{
"step_net"
,
"step_scopes
"
,
"outlink@grad"
,
"inlink@grad
"
,
"step_net"
,
"step_scopes
@GRAD"
,
"outlinks@GRAD"
,
"inlinks@GRAD
"
,
"memories"
,
"pre_memories"
,
"boot_memories@grad
"
};
"memories"
,
"pre_memories"
,
"boot_memories@GRAD
"
};
RecurrentOp
::
RecurrentOp
(
const
std
::
string
&
type
,
RecurrentOp
::
RecurrentOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
inputs
,
...
@@ -226,13 +225,13 @@ RecurrentGradientOp::RecurrentGradientOp(
...
@@ -226,13 +225,13 @@ RecurrentGradientOp::RecurrentGradientOp(
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
rnn
::
InitArgument
(
kArgName
,
&
arg_
,
*
this
);
rnn
::
InitArgument
(
kArgName
,
&
arg_
,
*
this
,
true
/*is grad*/
);
alg_
.
Init
(
&
arg_
,
&
stepnet_
);
alg_
.
Init
(
&
arg_
,
&
stepnet_
);
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
REGISTER_OP
_WITHOUT_GRADIENT
(
REGISTER_OP
(
recurrent
,
paddle
::
operators
::
RecurrentOp
,
recurrent
,
paddle
::
operators
::
RecurrentOp
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
,
paddle
::
operators
::
RecurrentAlgorithmProtoAndCheckerMaker
);
recurrent_grad
,
paddle
::
operators
::
RecurrentGradientOp
);
paddle/operators/recurrent_op.h
浏览文件 @
5b7fd00d
...
@@ -22,7 +22,7 @@ namespace paddle {
...
@@ -22,7 +22,7 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// TODO(
Yan Chunwei):
// TODO(
Superjom)
// 1. No-padding computing for sequences with indifinite length in one batch.
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 3. Internal Memory.
...
@@ -177,6 +177,9 @@ class RecurrentGradientOp : public framework::OperatorBase {
...
@@ -177,6 +177,9 @@ class RecurrentGradientOp : public framework::OperatorBase {
static
const
rnn
::
ArgumentName
kArgName
;
static
const
rnn
::
ArgumentName
kArgName
;
/*
* set a stepnet that is created according to a RecurrentOp's stepnet.
*/
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
stepnet_
=
std
::
move
(
net
);
}
}
...
...
paddle/operators/rnn/recurrent_op_utils.cc
浏览文件 @
5b7fd00d
...
@@ -109,15 +109,14 @@ void LinkMemories(const std::vector<Scope*>& scopes,
...
@@ -109,15 +109,14 @@ void LinkMemories(const std::vector<Scope*>& scopes,
}
}
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
framework
::
OperatorBase
&
op
)
{
const
framework
::
OperatorBase
&
op
,
bool
is_grad
)
{
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
arg
->
step_scopes
=
is_grad
?
op
.
Input
(
name
.
step_scopes
)
:
op
.
Output
(
name
.
step_scopes
);
arg
->
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
arg
->
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
arg
->
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
arg
->
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
boot_memories
=
op
.
Inputs
(
name
.
boot_memories
);
auto
boot_memories
=
is_grad
?
op
.
Outputs
(
name
.
boot_memories
)
:
op
.
Inputs
(
name
.
boot_memories
);
// attributes
// attributes
auto
memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
);
auto
memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
);
auto
pre_memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
);
auto
pre_memories
=
op
.
Attr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
);
...
...
paddle/operators/rnn/recurrent_op_utils.h
浏览文件 @
5b7fd00d
...
@@ -78,7 +78,7 @@ void LinkMemories(const std::vector<Scope*>& step_scopes,
...
@@ -78,7 +78,7 @@ void LinkMemories(const std::vector<Scope*>& step_scopes,
const
int
offset
,
bool
infer_shape_mode
);
const
int
offset
,
bool
infer_shape_mode
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
framework
::
OperatorBase
&
op
);
const
framework
::
OperatorBase
&
op
,
bool
is_grad
=
false
);
}
// namespace rnn
}
// namespace rnn
}
// namespace operators
}
// namespace operators
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
5b7fd00d
...
@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
...
@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
paddle.v2.framework.op
import
Operator
,
RecurrentOp
from
paddle.v2.framework.op
import
Operator
,
RecurrentOp
from
op_test
import
get_numeric_gradient
def
py_sigmoid
(
x
):
def
py_sigmoid
(
x
):
...
@@ -47,7 +48,7 @@ class PySimpleRNN(object):
...
@@ -47,7 +48,7 @@ class PySimpleRNN(object):
else
:
else
:
pre_mem
=
self
.
h_boot
pre_mem
=
self
.
h_boot
xW
=
np
.
matmul
(
x
,
self
.
W
)
xW
=
np
.
matmul
(
x
,
self
.
W
)
hU
=
np
.
matmul
(
mem
,
self
.
U
)
hU
=
np
.
matmul
(
pre_
mem
,
self
.
U
)
sum
=
xW
+
hU
sum
=
xW
+
hU
self
.
mems
[
step_id
]
=
py_sigmoid
(
sum
)
self
.
mems
[
step_id
]
=
py_sigmoid
(
sum
)
...
@@ -68,7 +69,7 @@ def create_tensor(scope, name, shape, np_data):
...
@@ -68,7 +69,7 @@ def create_tensor(scope, name, shape, np_data):
return
tensor
return
tensor
class
TestRecurrentOp
(
unittest
.
TestCase
):
class
RecurrentOpTest
(
unittest
.
TestCase
):
'''
'''
Test RNNOp
Test RNNOp
...
@@ -158,6 +159,42 @@ class TestRecurrentOp(unittest.TestCase):
...
@@ -158,6 +159,42 @@ class TestRecurrentOp(unittest.TestCase):
print
print
print
'py_output'
,
py_output
print
'py_output'
,
py_output
self
.
assertEqual
(
pd_output
.
shape
,
py_output
.
shape
)
self
.
assertEqual
(
pd_output
.
shape
,
py_output
.
shape
)
self
.
assertTrue
(
np
.
isclose
(
pd_output
,
py_output
,
rtol
=
0.1
).
all
())
class
RecurrentGradientOpTest
(
unittest
.
TestCase
):
def
create_forward_op
(
self
):
self
.
forward_op
=
RecurrentOp
(
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
step_net
=
"stepnet"
,
# outputs
outlinks
=
[
"h"
],
step_scopes
=
"step_scopes"
,
# attributes
pre_memories
=
[
"h@pre"
],
memories
=
[
"h@alias"
])
# create a stepnet for RNN
stepnet
=
core
.
Net
.
create
()
x_fc_op
=
Operator
(
"mul"
,
X
=
"x@alias"
,
Y
=
"W"
,
Out
=
"Wx"
)
h_fc_op
=
Operator
(
"mul"
,
X
=
"h@pre"
,
Y
=
"U"
,
Out
=
"Uh"
)
sum_op
=
Operator
(
"add"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
append_op
(
op
)
stepnet
.
complete_add_op
(
True
)
self
.
forward_op
.
set_stepnet
(
stepnet
)
def
create_gradient_op
(
self
):
a
=
set
()
backward_op
=
core
.
RecurrentOp
.
backward
(
self
.
forward_op
,
a
)
def
test_grad
(
self
):
self
.
create_forward_op
()
self
.
create_gradient_op
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录