Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5ad020e2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5ad020e2
编写于
2月 28, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move sgd to phi; test=develop
上级
2bb5aae8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
404 addition
and
0 deletion
+404
-0
paddle/phi/kernels/cpu/sgd_kernel.cc
paddle/phi/kernels/cpu/sgd_kernel.cc
+185
-0
paddle/phi/kernels/gpu/sgd_kernel.cu
paddle/phi/kernels/gpu/sgd_kernel.cu
+167
-0
paddle/phi/kernels/sgd_kernel.h
paddle/phi/kernels/sgd_kernel.h
+52
-0
未找到文件。
paddle/phi/kernels/cpu/sgd_kernel.cc
0 → 100644
浏览文件 @
5ad020e2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
>
void
sgd_dense_param_dense_grad_impl
(
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
grad
,
DenseTensor
*
param_out
)
{
const
auto
sz
=
param_out
->
numel
();
paddle
::
operators
::
jit
::
sgd_attr_t
attr
(
1
,
sz
,
1
,
sz
,
1
);
const
T
*
lr
=
learning_rate
.
data
<
T
>
();
const
T
*
param_data
=
param
.
data
<
T
>
();
const
T
*
grad_data
=
grad
.
data
<
T
>
();
int64_t
rows_idx
=
0
;
T
*
out_data
=
param_out
->
data
<
T
>
();
auto
sgd
=
paddle
::
operators
::
jit
::
KernelFuncs
<
paddle
::
operators
::
jit
::
SgdTuple
<
T
>
,
phi
::
CPUPlace
>::
Cache
()
.
At
(
attr
);
sgd
(
lr
,
param_data
,
grad_data
,
&
rows_idx
,
out_data
,
&
attr
);
}
template
<
>
void
sgd_dense_param_dense_grad_impl
<
phi
::
dtype
::
bfloat16
>
(
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
grad
,
DenseTensor
*
param_out
)
{
auto
p
=
EigenVector
<
phi
::
dtype
::
bfloat16
>::
Flatten
(
param
);
auto
g
=
EigenVector
<
phi
::
dtype
::
bfloat16
>::
Flatten
(
grad
);
auto
o
=
EigenVector
<
phi
::
dtype
::
bfloat16
>::
Flatten
(
*
param_out
);
const
auto
*
lr
=
learning_rate
.
data
<
phi
::
dtype
::
bfloat16
>
();
o
=
p
-
lr
[
0
]
*
g
;
}
template
<
typename
T
>
void
sgd_dense_param_sparse_grad_impl
(
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
DenseTensor
*
param_out
)
{
const
auto
&
grad_value
=
grad
.
value
();
const
auto
&
grad_rows
=
grad
.
rows
();
const
T
*
param_data
=
param
.
data
<
T
>
();
const
T
*
grad_data
=
grad_value
.
data
<
T
>
();
const
T
*
lr
=
learning_rate
.
data
<
T
>
();
const
int64_t
*
rows_data
=
grad_rows
.
data
();
T
*
out_data
=
param_out
->
data
<
T
>
();
paddle
::
operators
::
jit
::
sgd_attr_t
attr
;
attr
.
param_height
=
param_out
->
dims
()[
0
];
attr
.
param_width
=
param_out
->
numel
()
/
attr
.
param_height
;
attr
.
grad_height
=
grad_rows
.
size
();
// note: it is not grad->height()
attr
.
grad_width
=
grad_value
.
numel
()
/
attr
.
grad_height
;
attr
.
selected_rows_size
=
grad_rows
.
size
();
auto
sgd
=
paddle
::
operators
::
jit
::
KernelFuncs
<
paddle
::
operators
::
jit
::
SgdTuple
<
T
>
,
phi
::
CPUPlace
>::
Cache
()
.
At
(
attr
);
sgd
(
lr
,
param_data
,
grad_data
,
rows_data
,
out_data
,
&
attr
);
}
template
<
>
void
sgd_dense_param_sparse_grad_impl
<
phi
::
dtype
::
bfloat16
>
(
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
DenseTensor
*
param_out
)
{
const
auto
&
grad_value
=
grad
.
value
();
const
auto
&
grad_rows
=
grad
.
rows
();
const
auto
grad_height
=
grad
.
height
();
const
int64_t
grad_val_height
=
static_cast
<
int64_t
>
(
grad_rows
.
size
());
const
auto
grad_width
=
grad_value
.
numel
()
/
grad_val_height
;
const
auto
*
grad_data
=
grad_value
.
data
<
phi
::
dtype
::
bfloat16
>
();
auto
*
out_data
=
param_out
->
data
<
phi
::
dtype
::
bfloat16
>
();
const
auto
*
lr
=
learning_rate
.
data
<
phi
::
dtype
::
bfloat16
>
();
for
(
size_t
i
=
0
;
i
<
grad_rows
.
size
();
++
i
)
{
PADDLE_ENFORCE_LT
(
grad_rows
[
i
],
grad_height
,
phi
::
errors
::
OutOfRange
(
"Grad rows index value should be less than grad height."
"Got [%s], but expected less than [%s]"
,
grad_rows
[
i
],
grad_height
));
const
int64_t
row
=
grad_rows
[
i
];
for
(
int64_t
j
=
0
;
j
<
grad_width
;
++
j
)
{
out_data
[
row
*
grad_width
+
j
]
-=
lr
[
0
]
*
grad_data
[
i
*
grad_width
+
j
];
}
}
}
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
master_param
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
)
{
dev_ctx
.
template
Alloc
<
T
>(
param_out
);
sgd_dense_param_dense_grad_impl
<
T
>
(
param
,
learning_rate
,
grad
,
param_out
);
}
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
const
DenseTensor
&
master_param
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
)
{
dev_ctx
.
template
Alloc
<
T
>(
param_out
);
sgd_dense_param_sparse_grad_impl
<
T
>
(
param
,
learning_rate
,
grad
,
param_out
);
}
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
SelectedRows
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
const
SelectedRows
&
master_param
,
bool
multi_precision
,
SelectedRows
*
param_out
,
SelectedRows
*
master_param_out
)
{
// for distributed training, a sparse var may be empty,
// just skip updating.
if
(
grad
.
rows
().
size
()
==
0
)
{
return
;
}
auto
param_row_width
=
param
.
value
().
dims
()[
1
];
auto
grad_row_width
=
grad
.
value
().
dims
()[
1
];
PADDLE_ENFORCE_EQ
(
param_row_width
,
grad_row_width
,
phi
::
errors
::
InvalidArgument
(
"The param_row in SgdOP should have the same size with grad_row. "
"But received param_row's width is [%s], and grad_row's width is "
"[%s]"
,
param_row_width
,
grad_row_width
));
const
auto
*
lr
=
learning_rate
.
data
<
T
>
();
const
auto
*
grad_data
=
grad
.
value
().
data
<
T
>
();
auto
*
out_data
=
param_out
->
mutable_value
()
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
grad
.
rows
().
size
();
i
++
)
{
int64_t
id_index
=
param_out
->
AutoGrownIndex
(
grad
.
rows
()[
i
],
false
);
PADDLE_ENFORCE_GE
(
id_index
,
static_cast
<
int64_t
>
(
0
),
phi
::
errors
::
InvalidArgument
(
"The id in SgdOp should be >= 0. But recevied id_index is [%s]"
,
id_index
));
for
(
int64_t
j
=
0
;
j
<
grad_row_width
;
j
++
)
{
out_data
[
id_index
*
grad_row_width
+
j
]
-=
lr
[
0
]
*
grad_data
[
i
*
grad_row_width
+
j
];
}
}
}
}
// namespace phi
paddle/phi/kernels/gpu/sgd_kernel.cu
0 → 100644
浏览文件 @
5ad020e2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_helper.h"
namespace
phi
{
template
<
typename
T
,
typename
MT
>
__global__
void
SGDKernelMT
(
const
T
*
param
,
const
T
*
grad
,
const
T
*
learning_rate
,
const
int
num
,
T
*
param_out
,
const
MT
*
master_param
,
MT
*
master_param_out
)
{
MT
lr
=
static_cast
<
MT
>
(
learning_rate
[
0
]);
CUDA_KERNEL_LOOP
(
i
,
num
)
{
MT
p_data
=
master_param
?
master_param
[
i
]
:
static_cast
<
MT
>
(
param
[
i
]);
MT
g_data
=
static_cast
<
MT
>
(
grad
[
i
]);
p_data
=
p_data
-
lr
*
g_data
;
param_out
[
i
]
=
static_cast
<
T
>
(
p_data
);
if
(
master_param_out
)
{
master_param_out
[
i
]
=
p_data
;
}
}
}
template
<
typename
T
>
__global__
void
SparseSGDFunctorKernel
(
const
T
*
selected_rows
,
const
int64_t
*
rows
,
const
T
*
learning_rate
,
T
*
tensor_out
,
int64_t
row_numel
,
int64_t
limit
)
{
for
(
int64_t
i
=
blockIdx
.
x
;
i
<
limit
;
i
+=
gridDim
.
x
)
{
const
T
*
selected_rows_ptr
=
selected_rows
+
i
*
row_numel
;
T
*
tensor_out_ptr
=
tensor_out
+
rows
[
i
]
*
row_numel
;
for
(
int64_t
index
=
threadIdx
.
x
;
index
<
row_numel
;
index
+=
blockDim
.
x
)
{
// Since index in rows of SelectedRows can be duplicate, we have to use
// Atomic Operation to avoid concurrent write error.
paddle
::
platform
::
CudaAtomicAdd
(
tensor_out_ptr
+
index
,
-
static_cast
<
T
>
(
1.0
)
*
learning_rate
[
0
]
*
selected_rows_ptr
[
index
]);
}
}
}
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
master_param
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
)
{
using
MPDType
=
typename
paddle
::
operators
::
details
::
MPTypeTrait
<
T
>::
Type
;
// do check here
// if (multi_precision) {
// bool has_master =
// ctx.HasInput("MasterParam") && ctx.HasOutput("MasterParamOut");
// }
const
MPDType
*
master_in_data
=
multi_precision
?
master_param
.
data
<
MPDType
>
()
:
nullptr
;
MPDType
*
master_out_data
=
multi_precision
?
master_param_out
->
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
())
:
nullptr
;
int
block
=
512
;
int
grid
=
(
param
.
numel
()
+
block
-
1
)
/
block
;
SGDKernelMT
<
T
,
MPDType
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
param
.
data
<
T
>
(),
grad
.
data
<
T
>
(),
learning_rate
.
data
<
T
>
(),
param
.
numel
(),
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
master_in_data
,
master_out_data
);
}
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
const
DenseTensor
&
master_param
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
)
{
using
MPDType
=
typename
paddle
::
operators
::
details
::
MPTypeTrait
<
T
>::
Type
;
// do some check here
// if (multi_precision) {
// bool has_master =
// ctx.HasInput("MasterParam") && ctx.HasOutput("MasterParamOut");
// }
const
MPDType
*
master_in_data
=
multi_precision
?
master_param
.
data
<
MPDType
>
()
:
nullptr
;
MPDType
*
master_out_data
=
multi_precision
?
master_param_out
->
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
())
:
nullptr
;
PADDLE_ENFORCE_EQ
(
&
param
,
param_out
,
phi
::
errors
::
InvalidArgument
(
"The input tensor Param of SgdOp should be equal with ParamOut "
"if variable's type is SelectedRows."
));
auto
in_height
=
grad
.
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
],
phi
::
errors
::
InvalidArgument
(
"The input tensor Grad's height of SgdOp should be "
"equal with ParamOut's dims. But received Grad's "
"height [%s] and ParamOut's dims [%s]"
,
in_height
,
out_dims
[
0
]));
auto
&
in_value
=
grad
.
value
();
auto
&
in_rows
=
grad
.
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
,
phi
::
errors
::
InvalidArgument
(
"The in_row_numel of SgdOp should be equal with "
"param_out's numel / in_height."
));
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
const
int
kThreadsPerBlock
=
256
;
int
thread_x
=
kThreadsPerBlock
;
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
paddle
::
framework
::
MixVector
<
int64_t
>
mixv_in_rows
(
&
in_rows
);
SparseSGDFunctorKernel
<<<
max_blocks
,
thread_x
,
0
,
dev_ctx
..
stream
()
>>>
(
in_data
,
mixv_in_rows
.
CUDAData
(
dev_ctx
.
GetPlace
()),
learning_rate
.
data
<
T
>
(),
out_data
,
in_row_numel
,
in_rows
.
size
());
}
}
// namespace phi
paddle/phi/kernels/sgd_kernel.h
0 → 100644
浏览文件 @
5ad020e2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
master_param
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
);
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
const
DenseTensor
&
master_param
,
bool
multi_precision
,
DenseTensor
*
param_out
,
DenseTensor
*
master_param_out
);
template
<
typename
T
,
typename
Context
>
void
SGDKernel
(
const
Context
&
dev_ctx
,
const
SelectedRows
&
param
,
const
DenseTensor
&
learning_rate
,
const
SelectedRows
&
grad
,
const
SelectedRows
&
master_param
,
bool
multi_precision
,
SelectedRows
*
param_out
,
SelectedRows
*
master_param_out
);
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录