Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5a44bf7e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5a44bf7e
编写于
5月 06, 2023
作者:
W
Wilber
提交者:
GitHub
5月 06, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add trt pow converter. (#53462)
* Add trt pow converter. * update to use AddConstantLayer * add dims=0 ut
上级
a4997311
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
181 addition
and
0 deletion
+181
-0
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+33
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+26
-0
test/ir/inference/test_trt_convert_elementwise.py
test/ir/inference/test_trt_convert_elementwise.py
+122
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
浏览文件 @
5a44bf7e
...
@@ -319,6 +319,37 @@ class ElementwiseTensorModOpConverter : public ElementwiseTensorOpConverter {
...
@@ -319,6 +319,37 @@ class ElementwiseTensorModOpConverter : public ElementwiseTensorOpConverter {
public:
public:
ElementwiseTensorModOpConverter
()
{
op_type_
=
"mod"
;
}
ElementwiseTensorModOpConverter
()
{
op_type_
=
"mod"
;
}
};
};
// The diff between `pow` and `elementwise_pow` is in:
// https://github.com/PaddlePaddle/Paddle/blob/release/2.4/python/paddle/tensor/math.py#L420
class
PowOpConverter
:
public
OpConverter
{
public:
PowOpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"Convert a pow op to TensorRT IElementWiseLayer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
float
factor
=
PADDLE_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"factor"
));
nvinfer1
::
Dims
dims_x
=
X
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
nvinfer1
::
Dims
trt_dims_y
;
trt_dims_y
.
nbDims
=
dims_x
.
nbDims
;
for
(
int
i
=
0
;
i
<
trt_dims_y
.
nbDims
;
i
++
)
{
trt_dims_y
.
d
[
i
]
=
1
;
}
std
::
vector
<
float
>
w_data
{
factor
};
auto
*
Y
=
AddConstantLayer
(
w_data
.
data
(),
trt_dims_y
);
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
Y
,
nvinfer1
::
ElementWiseOperation
::
kPOW
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace inference
}
// namespace inference
}
// namespace paddle
}
// namespace paddle
...
@@ -369,3 +400,5 @@ REGISTER_TRT_OP_CONVERTER(logical_and, ElementwiseTensorLogicalAndOpConverter);
...
@@ -369,3 +400,5 @@ REGISTER_TRT_OP_CONVERTER(logical_and, ElementwiseTensorLogicalAndOpConverter);
REGISTER_TRT_OP_CONVERTER
(
less_equal
,
ElementwiseTensorLessEqualOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
less_equal
,
ElementwiseTensorLessEqualOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
greater_equal
,
REGISTER_TRT_OP_CONVERTER
(
greater_equal
,
ElementwiseTensorGreaterEqualOpConverter
);
ElementwiseTensorGreaterEqualOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
pow
,
PowOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
5a44bf7e
...
@@ -1498,6 +1498,31 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -1498,6 +1498,31 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
}
}
if
(
op_type
==
"pow"
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
auto
*
x_var_desc
=
block
->
FindVar
(
desc
.
Input
(
"X"
)[
0
]);
const
auto
x_shape
=
x_var_desc
->
GetShape
();
if
(
!
with_dynamic_shape
&&
(
x_shape
.
size
()
==
1
||
x_shape
.
size
()
==
0
))
{
VLOG
(
3
)
<<
op_type
<<
" op does not support input's dim is 1 or 0 in tensorrt "
"static shape mode."
;
return
false
;
}
// the same as `elementwise_pow`.
if
(
x_var_desc
->
GetDataType
()
==
paddle
::
framework
::
proto
::
VarType_Type
::
VarType_Type_INT32
)
{
VLOG
(
3
)
<<
"These operations (pow) do not support int32 "
"datatype."
;
return
false
;
}
}
if
(
op_type
==
"stack"
)
{
if
(
op_type
==
"stack"
)
{
if
(
!
with_dynamic_shape
)
{
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
VLOG
(
3
)
...
@@ -2885,6 +2910,7 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -2885,6 +2910,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_mul"
,
"elementwise_mul"
,
"elementwise_div"
,
"elementwise_div"
,
"elementwise_pow"
,
"elementwise_pow"
,
"pow"
,
"elementwise_min"
,
"elementwise_min"
,
"elementwise_max"
,
"elementwise_max"
,
"elementwise_floordiv"
,
"elementwise_floordiv"
,
...
...
test/ir/inference/test_trt_convert_elementwise.py
浏览文件 @
5a44bf7e
...
@@ -1092,5 +1092,127 @@ class TrtConvertElementwiseTestTwoInputSkipCase(TrtLayerAutoScanTest):
...
@@ -1092,5 +1092,127 @@ class TrtConvertElementwiseTestTwoInputSkipCase(TrtLayerAutoScanTest):
self
.
run_test
()
self
.
run_test
()
class
TrtConvertPowOp
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
if
len
(
shape
)
==
0
:
return
np
.
random
.
random
([]).
astype
(
np
.
float32
)
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
4
]:
for
shape
in
[
[],
[
32
],
[
batch
,
32
],
[
batch
,
32
,
32
],
[
batch
,
32
,
16
,
32
],
]:
for
factor
in
[
1.0
,
2.0
,
-
1.0
,
0.5
,
-
2
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"factor"
:
factor
}]
ops_config
=
[
{
"op_type"
:
"pow"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"output_data"
:
np
.
float32
},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[]}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
]}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
,
32
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
4
,
32
,
16
,
32
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
(
self
.
dims
==
1
or
self
.
dims
==
0
)
and
not
dynamic_shape
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录