提交 59f7778b 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #1476 from wangkuiyi/dataset

Simplify CIFAR/MNIST Data Package, Remove Scipy/sklearn package dependencies.
"""
CIFAR Dataset.
URL: https://www.cs.toronto.edu/~kriz/cifar.html
the default train_creator, test_creator used for CIFAR-10 dataset.
CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
"""
import cPickle
import itertools
import tarfile
import numpy
import paddle.v2.dataset.common
import tarfile
from config import download
__all__ = [
'cifar_100_train_creator', 'cifar_100_test_creator', 'train_creator',
'test_creator'
]
__all__ = ['train100', 'test100', 'train10', 'test10']
CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
URL_PREFIX = 'https://www.cs.toronto.edu/~kriz/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
def __read_batch__(filename, sub_name):
def reader():
def __read_one_batch_impl__(batch):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader_creator(filename, sub_name):
def read_batch(batch):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
for sample, label in itertools.izip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label)
def reader():
with tarfile.open(filename, mode='r') as f:
names = (each_item.name for each_item in f
if sub_name in each_item.name)
for name in names:
batch = cPickle.load(f.extractfile(name))
for item in __read_one_batch_impl__(batch):
for item in read_batch(batch):
yield item
return reader
def cifar_100_train_creator():
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
return __read_batch__(fn, 'train')
def cifar_100_test_creator():
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
return __read_batch__(fn, 'test')
def train_creator():
"""
Default train reader creator. Use CIFAR-10 dataset.
"""
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
return __read_batch__(fn, 'data_batch')
def train100():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
'train')
def test_creator():
"""
Default test reader creator. Use CIFAR-10 dataset.
"""
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
return __read_batch__(fn, 'test_batch')
def test100():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR100_URL, 'cifar', CIFAR100_MD5),
'test')
def unittest():
for _ in train_creator()():
pass
for _ in test_creator()():
pass
def train10():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'data_batch')
if __name__ == '__main__':
unittest()
def test10():
return reader_creator(
paddle.v2.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'test_batch')
import requests
import hashlib
import os
import shutil
__all__ = ['DATA_HOME', 'download', 'md5file']
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
def md5file(fname):
hash_md5 = hashlib.md5()
f = open(fname, "rb")
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
f.close()
return hash_md5.hexdigest()
def download(url, module_name, md5sum):
dirname = os.path.join(DATA_HOME, module_name)
if not os.path.exists(dirname):
os.makedirs(dirname)
filename = os.path.join(dirname, url.split('/')[-1])
if not (os.path.exists(filename) and md5file(filename) == md5sum):
r = requests.get(url, stream=True)
with open(filename, 'w') as f:
shutil.copyfileobj(r.raw, f)
return filename
import hashlib
import os
import shutil
import urllib2
__all__ = ['DATA_HOME', 'download']
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
def download(url, md5):
filename = os.path.split(url)[-1]
assert DATA_HOME is not None
filepath = os.path.join(DATA_HOME, md5)
if not os.path.exists(filepath):
os.makedirs(filepath)
__full_file__ = os.path.join(filepath, filename)
def __file_ok__():
if not os.path.exists(__full_file__):
return False
md5_hash = hashlib.md5()
with open(__full_file__, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
md5_hash.update(chunk)
return md5_hash.hexdigest() == md5
while not __file_ok__():
response = urllib2.urlopen(url)
with open(__full_file__, mode='wb') as of:
shutil.copyfileobj(fsrc=response, fdst=of)
return __full_file__
import sklearn.datasets.mldata
import sklearn.model_selection
"""
MNIST dataset.
"""
import numpy
from config import DATA_HOME
import paddle.v2.dataset.common
import subprocess
__all__ = ['train_creator', 'test_creator']
__all__ = ['train', 'test']
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '25e3cc63507ef6e98d5dc541e8672bb6'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = '4e9511fe019b2189026bd0421ba7b688'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
def __mnist_reader_creator__(data, target):
def reader_creator(image_filename, label_filename, buffer_size):
def reader():
n_samples = data.shape[0]
for i in xrange(n_samples):
yield (data[i] / 255.0).astype(numpy.float32), int(target[i])
# According to http://stackoverflow.com/a/38061619/724872, we
# cannot use standard package gzip here.
m = subprocess.Popen(["zcat", image_filename], stdout=subprocess.PIPE)
m.stdout.read(16) # skip some magic bytes
return reader
l = subprocess.Popen(["zcat", label_filename], stdout=subprocess.PIPE)
l.stdout.read(8) # skip some magic bytes
while True:
labels = numpy.fromfile(
l.stdout, 'ubyte', count=buffer_size).astype("int")
TEST_SIZE = 10000
if labels.size != buffer_size:
break # numpy.fromfile returns empty slice after EOF.
data = sklearn.datasets.mldata.fetch_mldata(
"MNIST original", data_home=DATA_HOME)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
data.data, data.target, test_size=TEST_SIZE, random_state=0)
images = numpy.fromfile(
m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
(buffer_size, 28 * 28)).astype('float32')
images = images / 255.0 * 2.0 - 1.0
def train_creator():
return __mnist_reader_creator__(X_train, y_train)
for i in xrange(buffer_size):
yield images[i, :], int(labels[i])
m.terminate()
l.terminate()
def test_creator():
return __mnist_reader_creator__(X_test, y_test)
return reader
def unittest():
assert len(list(test_creator()())) == TEST_SIZE
def train():
return reader_creator(
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
TRAIN_IMAGE_MD5),
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
TRAIN_LABEL_MD5), 100)
if __name__ == '__main__':
unittest()
def test():
return reader_creator(
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
TEST_IMAGE_MD5),
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
TEST_LABEL_MD5), 100)
import zipfile
from config import download
from common import download
import re
import random
import functools
......
import paddle.v2.dataset.cifar
import unittest
class TestCIFAR(unittest.TestCase):
def check_reader(self, reader):
sum = 0
label = 0
for l in reader():
self.assertEqual(l[0].size, 3072)
if l[1] > label:
label = l[1]
sum += 1
return sum, label
def test_test10(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.test10())
self.assertEqual(instances, 10000)
self.assertEqual(max_label_value, 9)
def test_train10(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.train10())
self.assertEqual(instances, 50000)
self.assertEqual(max_label_value, 9)
def test_test100(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.test100())
self.assertEqual(instances, 10000)
self.assertEqual(max_label_value, 99)
def test_train100(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.cifar.train100())
self.assertEqual(instances, 50000)
self.assertEqual(max_label_value, 99)
if __name__ == '__main__':
unittest.main()
import paddle.v2.dataset.common
import unittest
import tempfile
class TestCommon(unittest.TestCase):
def test_md5file(self):
_, temp_path = tempfile.mkstemp()
with open(temp_path, 'w') as f:
f.write("Hello\n")
self.assertEqual('09f7e02f1290be211da707a266f153b3',
paddle.v2.dataset.common.md5file(temp_path))
def test_download(self):
yi_avatar = 'https://avatars0.githubusercontent.com/u/1548775?v=3&s=460'
self.assertEqual(
paddle.v2.dataset.common.DATA_HOME + '/test/1548775?v=3&s=460',
paddle.v2.dataset.common.download(
yi_avatar, 'test', 'f75287202d6622414c706c36c16f8e0d'))
if __name__ == '__main__':
unittest.main()
import paddle.v2.dataset.mnist
import unittest
class TestMNIST(unittest.TestCase):
def check_reader(self, reader):
sum = 0
label = 0
for l in reader():
self.assertEqual(l[0].size, 784)
if l[1] > label:
label = l[1]
sum += 1
return sum, label
def test_train(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.mnist.train())
self.assertEqual(instances, 60000)
self.assertEqual(max_label_value, 9)
def test_test(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.mnist.test())
self.assertEqual(instances, 10000)
self.assertEqual(max_label_value, 9)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册