Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
588eb8e2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
588eb8e2
编写于
4月 11, 2020
作者:
G
Guanghua Yu
提交者:
GitHub
4月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add `paddle.nn.loss.CrossEntropyLoss` op (#23669)
* add cross_entropy_loss,test=develop * fix some commnet,test=develop
上级
0a878be8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
249 addition
and
2 deletion
+249
-2
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
...n/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
+136
-0
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+1
-1
python/paddle/nn/layer/loss.py
python/paddle/nn/layer/loss.py
+112
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_cross_entropy_loss.py
0 → 100644
浏览文件 @
588eb8e2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
unittest
class
CrossEntropyLoss
(
unittest
.
TestCase
):
def
test_cross_entropy_loss_mean
(
self
):
input_np
=
np
.
random
.
random
([
5
,
100
]).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
random
([
5
,
1
]).
astype
(
np
.
int64
)
weight_np
=
np
.
random
.
random
([
100
]).
astype
(
np
.
float32
)
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
[
5
,
100
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
5
,
1
],
dtype
=
'int64'
)
weight
=
fluid
.
layers
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
'float32'
)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
))
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
def
test_cross_entropy_loss_sum
(
self
):
input_np
=
np
.
random
.
random
([
5
,
100
]).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
random
([
5
,
1
]).
astype
(
np
.
int64
)
weight_np
=
np
.
random
.
random
([
100
]).
astype
(
np
.
float32
)
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
[
5
,
100
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
5
,
1
],
dtype
=
'int64'
)
weight
=
fluid
.
layers
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
'float32'
)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
,
reduction
=
'sum'
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'sum'
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
def
test_cross_entropy_loss_none
(
self
):
input_np
=
np
.
random
.
random
([
5
,
100
]).
astype
(
np
.
float32
)
label_np
=
np
.
random
.
random
([
5
,
1
]).
astype
(
np
.
int64
)
weight_np
=
np
.
random
.
random
([
100
]).
astype
(
np
.
float32
)
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
with
fluid
.
program_guard
(
prog
,
startup_prog
):
input
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
[
5
,
100
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
5
,
1
],
dtype
=
'int64'
)
weight
=
fluid
.
layers
.
data
(
name
=
'weight'
,
shape
=
[
100
],
dtype
=
'float32'
)
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
weight
,
reduction
=
'none'
)
ret
=
cross_entropy_loss
(
input
,
label
)
exe
=
fluid
.
Executor
(
place
)
static_ret
=
exe
.
run
(
prog
,
feed
=
{
'input'
:
input_np
,
'label'
:
label_np
,
"weight"
:
weight_np
},
fetch_list
=
[
ret
])
self
.
assertIsNotNone
(
static_ret
)
with
fluid
.
dygraph
.
guard
():
cross_entropy_loss
=
paddle
.
nn
.
loss
.
CrossEntropyLoss
(
weight
=
fluid
.
dygraph
.
to_variable
(
weight_np
),
reduction
=
'none'
)
dy_ret
=
cross_entropy_loss
(
fluid
.
dygraph
.
to_variable
(
input_np
),
fluid
.
dygraph
.
to_variable
(
label_np
))
dy_ret_value
=
dy_ret
.
numpy
()
self
.
assertIsNotNone
(
dy_ret_value
)
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_value
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/nn/__init__.py
浏览文件 @
588eb8e2
...
@@ -59,7 +59,7 @@ __all__ += norm.__all__
...
@@ -59,7 +59,7 @@ __all__ += norm.__all__
# from .layer.conv import TreeConv #DEFINE_ALIAS
# from .layer.conv import TreeConv #DEFINE_ALIAS
# from .layer.conv import Conv1D #DEFINE_ALIAS
# from .layer.conv import Conv1D #DEFINE_ALIAS
# from .layer.loss import NCELoss #DEFINE_ALIAS
# from .layer.loss import NCELoss #DEFINE_ALIAS
# from .layer.loss import CrossEntropyLoss
#DEFINE_ALIAS
from
.layer.loss
import
CrossEntropyLoss
#DEFINE_ALIAS
# from .layer.loss import MSELoss #DEFINE_ALIAS
# from .layer.loss import MSELoss #DEFINE_ALIAS
from
.layer.loss
import
L1Loss
#DEFINE_ALIAS
from
.layer.loss
import
L1Loss
#DEFINE_ALIAS
from
.layer
import
loss
#DEFINE_ALIAS
from
.layer
import
loss
#DEFINE_ALIAS
...
...
python/paddle/nn/layer/loss.py
浏览文件 @
588eb8e2
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
__all__
=
[
__all__
=
[
#'NCELoss',
#'NCELoss',
#
'CrossEntropyLoss',
'CrossEntropyLoss'
,
# 'MSELoss',
# 'MSELoss',
'L1Loss'
,
'L1Loss'
,
# 'NLLLoss',
# 'NLLLoss',
...
@@ -24,6 +24,117 @@ __all__ = [
...
@@ -24,6 +24,117 @@ __all__ = [
]
]
class
CrossEntropyLoss
(
fluid
.
dygraph
.
Layer
):
"""
This operator implements the cross entropy loss function. This OP combines `softmax`,
`cross_entropy`, and `reduce_sum`/`reduce_mean` together.
It is useful when training a classification problem with `C` classes.
If provided, the optional argument `weight` should be a 1D Variable assigning
weight to each of the classes.
For predictions label, and target label, the loss is calculated as follows.
.. math::
loss_j = -
\\
text{input[class]} +
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{input}_i)
\\
right), j = 1,..., K
If weight is not `None`:
.. math::
loss_j =
\\
text{weight[class]}(-
\\
text{input[class]} +
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{input}_i)
\\
right)), j = 1,..., K
Parameters:
input (Variable): Input tensor, the data type is float32,
float64, int32, int64.
label (Variable): Label tensor, the data type is float32,
float64, int32, int64.
weight (Variable, optional): Weight tensor, a manual rescaling weight given
to each class. It has the same dimensions as class number and the data type
is float32, float64, int32, int64. Default is ``'None'``.
reduction (str, optional): Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
Returns:
The tensor variable storing the cross_entropy_loss of input and label.
Return type: Variable.
Examples:
.. code-block:: python
# declarative mode
import paddle
import paddle.fluid as fluid
import numpy as np
input = fluid.layers.data(name='input', shape=[5, 100], dtype='float32')
label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
weight = fluid.layers.data(name='weight', shape=[100], dtype='float32')
ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
output = ce_loss(input,label)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.random.random([5, 100]).astype("float32")
label_data = np.array([[1], [9], [40], [50], [90]]).astype("int64")
weight_data = np.random.random([100]).astype("float32")
output = exe.run(fluid.default_main_program(),
feed={"input": input_data, "label": label_data,"weight": weight_data},
fetch_list=[output],
return_numpy=True)
print(output)
# imperative mode
import paddle.fluid.dygraph as dg
with dg.guard(place) as g:
input = dg.to_variable(input_data)
label = dg.to_variable(label_data)
weight = dg.to_variable(weight_data)
ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
output = ce_loss(input, label)
print(output.numpy())
"""
def
__init__
(
self
,
weight
=
None
,
reduction
=
'mean'
):
super
(
CrossEntropyLoss
,
self
).
__init__
()
self
.
weight
=
weight
self
.
reduction
=
reduction
def
forward
(
self
,
input
,
label
):
fluid
.
data_feeder
.
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'cross_entropy_loss'
)
fluid
.
data_feeder
.
check_variable_and_dtype
(
label
,
'label'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'cross_entropy_loss'
)
if
self
.
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
raise
ValueError
(
"The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or 'none',"
" but received %s, which is not allowed."
%
self
.
reduction
)
softmax_out
=
fluid
.
layers
.
softmax
(
input
)
if
self
.
weight
is
not
None
:
if
isinstance
(
self
.
weight
,
fluid
.
framework
.
Variable
):
softmax_out
=
fluid
.
layers
.
elementwise_pow
(
softmax_out
,
self
.
weight
,
axis
=-
1
)
else
:
raise
ValueError
(
"The weight' is not a Variable, please convert to Variable."
)
out
=
fluid
.
layers
.
cross_entropy
(
softmax_out
,
label
)
if
self
.
reduction
==
'sum'
:
return
fluid
.
layers
.
reduce_sum
(
out
)
elif
self
.
reduction
==
'mean'
:
return
fluid
.
layers
.
reduce_mean
(
out
)
else
:
return
out
class
L1Loss
(
fluid
.
dygraph
.
Layer
):
class
L1Loss
(
fluid
.
dygraph
.
Layer
):
"""
"""
This interface is used to construct a callable object of the ``L1Loss`` class.
This interface is used to construct a callable object of the ``L1Loss`` class.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录