Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
586671ea
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
586671ea
编写于
3月 11, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix error
上级
d35f5882
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
1086 addition
and
751 deletion
+1086
-751
paddle/fluid/operators/slice_op.h
paddle/fluid/operators/slice_op.h
+161
-2
paddle/phi/kernels/gpu/slice_grad_kernel.cu.cc
paddle/phi/kernels/gpu/slice_grad_kernel.cu.cc
+2
-1
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
+22
-15
paddle/phi/kernels/impl/slice_kernel_impl.h
paddle/phi/kernels/impl/slice_kernel_impl.h
+5
-2
paddle/phi/kernels/slice_grad_kernel.h
paddle/phi/kernels/slice_grad_kernel.h
+4
-2
paddle/phi/kernels/slice_kernel.h
paddle/phi/kernels/slice_kernel.h
+3
-2
paddle/phi/ops/compat/slice_sig.cc
paddle/phi/ops/compat/slice_sig.cc
+146
-10
paddle/pten/kernels/slice_kernel.h
paddle/pten/kernels/slice_kernel.h
+3
-2
python/paddle/fluid/tests/unittests/test_slice_op.py
python/paddle/fluid/tests/unittests/test_slice_op.py
+740
-715
未找到文件。
paddle/fluid/operators/slice_op.h
浏览文件 @
586671ea
...
...
@@ -28,10 +28,103 @@ using Variable = framework::Variable;
using
LoDTensorArray
=
framework
::
LoDTensorArray
;
using
DDim
=
framework
::
DDim
;
inline
void
DealTensorArray
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
bool
out_is_array
)
{
auto
in_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
// If the input is LoDTensorArray, the rank of input is 1.
int64_t
in_size
=
in_array
->
size
();
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
in_size
)
:
starts
[
0
];
int64_t
end
=
ends
[
0
]
<
0
?
(
ends
[
0
]
+
in_size
)
:
ends
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
in_size
);
if
(
starts
[
0
]
==
-
1
&&
end
==
0
)
{
end
=
start
+
1
;
}
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received end = %d, start = %d."
,
ends
[
0
],
starts
[
0
]));
int64_t
out_size
=
end
-
start
;
if
(
out_is_array
)
{
auto
out_array
=
ctx
.
Output
<
LoDTensorArray
>
(
"Out"
);
out_array
->
resize
(
out_size
);
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
auto
*
out_tensor
=
&
out_array
->
at
(
i
);
auto
in_tensor
=
in_array
->
at
(
i
+
start
);
out_tensor
->
set_lod
(
in_tensor
.
lod
());
if
(
in_tensor
.
memory_size
()
>
0
)
{
paddle
::
framework
::
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out_tensor
);
}
else
{
VLOG
(
10
)
<<
"WARNING: The input tensor 'x_tensor' holds no memory, so "
"nothing has been written to output array["
<<
i
<<
"]."
;
}
}
}
else
{
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
in_tensor
=
in_array
->
at
(
start
);
paddle
::
framework
::
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SliceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
Variable
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
bool
input_is_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
bool
out_is_array
=
out_var
->
IsType
<
LoDTensorArray
>
();
auto
axes_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
axes
(
axes_int
.
begin
(),
axes_int
.
end
());
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
// Step 1: Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
PADDLE_ENFORCE_EQ
(
ends
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
// Step 2: Compute output
if
(
input_is_array
)
{
DealTensorArray
(
ctx
,
starts
,
ends
,
out_is_array
);
return
;
}
}
private:
};
...
...
@@ -39,7 +132,73 @@ class SliceKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
SliceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
Variable
*
d_input_var
=
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Input"
));
const
Variable
*
d_out_var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
bool
d_input_is_array
=
d_input_var
->
IsType
<
LoDTensorArray
>
();
bool
d_out_is_array
=
d_out_var
->
IsType
<
LoDTensorArray
>
();
if
(
d_input_is_array
)
{
auto
*
input_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
auto
*
d_in_arr
=
ctx
.
Output
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Input"
));
int64_t
d_in_size
=
input_array
->
size
();
d_in_arr
->
resize
(
d_in_size
);
// If the input is LoDTensorArray, the rank of input is 1.
// So only use the 0th element of starts.
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
d_in_size
)
:
starts
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
// set zero
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
functor
;
for
(
int
i
=
0
;
i
<
d_in_size
;
++
i
)
{
auto
dim
=
input_array
->
at
(
i
).
dims
();
d_in_arr
->
at
(
i
).
Resize
(
dim
);
d_in_arr
->
at
(
i
).
mutable_data
<
T
>
(
ctx
.
GetPlace
());
functor
(
reinterpret_cast
<
const
DeviceContext
&>
(
dev_ctx
),
&
d_in_arr
->
at
(
i
),
static_cast
<
T
>
(
0
));
}
if
(
d_out_is_array
)
{
auto
*
d_out_arr
=
ctx
.
Input
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Out"
));
int
d_out_size
=
d_out_arr
->
size
();
for
(
int
i
=
0
;
i
<
d_out_size
;
++
i
)
{
paddle
::
framework
::
TensorCopy
(
d_out_arr
->
at
(
i
),
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
+
i
)));
}
}
else
{
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
paddle
::
framework
::
TensorCopy
(
*
d_out
,
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
)));
}
return
;
}
}
private:
};
...
...
paddle/phi/kernels/gpu/slice_grad_kernel.cu.cc
浏览文件 @
586671ea
...
...
@@ -29,4 +29,5 @@ PD_REGISTER_KERNEL(slice_grad,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
,
phi
::
dtype
::
bfloat16
)
{}
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
浏览文件 @
586671ea
...
...
@@ -30,6 +30,8 @@ void LaunchEigenPadding(
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
{
auto
&
place
=
*
context
.
template
eigen_device
();
LOG
(
ERROR
)
<<
D
<<
"
\t
"
<<
in_dims
;
LOG
(
ERROR
)
<<
out_dims
;
auto
d_in_t
=
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_input
,
in_dims
);
auto
d_out_t
=
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
...
...
@@ -150,7 +152,7 @@ void EigenPaddingCompute(
// the second dimension do not need padding, set padding[1] zero
reshaped_padding
[
1
].
first
=
reshaped_padding
[
1
].
second
=
0
;
LaunchEigenPadding
<
T
,
Context
>
(
context
,
LaunchEigenPadding
<
T
,
Context
,
2
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
...
...
@@ -190,7 +192,8 @@ void EigenPaddingCompute(
// the third dimension do not need padding, set padding[2] zero
reshaped_padding
[
2
].
first
=
reshaped_padding
[
2
].
second
=
0
;
LaunchEigenPadding
<
T
,
Context
>
(
context
,
LOG
(
ERROR
)
<<
"run here"
;
LaunchEigenPadding
<
T
,
Context
,
3
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
...
...
@@ -270,14 +273,18 @@ void SliceGradCompute(const Context& ctx,
template
<
typename
T
,
typename
Context
>
void
SliceGradRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
ScalarArray
&
starts_arr
,
const
ScalarArray
&
ends_arr
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
)
{
size_t
rank
=
out_grad
.
dims
().
size
();
size_t
rank
=
input
.
dims
().
size
();
auto
&
starts
=
starts_arr
.
GetData
();
auto
&
ends
=
ends_arr
.
GetData
();
switch
(
rank
)
{
case
1
:
...
...
paddle/phi/kernels/impl/slice_kernel_impl.h
浏览文件 @
586671ea
...
...
@@ -110,13 +110,16 @@ template <typename T, typename Context>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
ScalarArray
&
starts_arr
,
const
ScalarArray
&
ends_arr
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
)
{
int
rank
=
input
.
dims
().
size
();
auto
&
starts
=
starts_arr
.
GetData
();
auto
&
ends
=
ends_arr
.
GetData
();
switch
(
rank
)
{
case
1
:
SliceCompute
<
T
,
Context
,
1
>
(
...
...
paddle/phi/kernels/slice_grad_kernel.h
浏览文件 @
586671ea
...
...
@@ -14,16 +14,18 @@
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SliceGradRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>
&
starts
,
const
std
::
vector
<
int64_t
>
&
ends
,
const
ScalarArray
&
starts
,
const
ScalarArray
&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
);
...
...
paddle/phi/kernels/slice_kernel.h
浏览文件 @
586671ea
...
...
@@ -14,6 +14,7 @@
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
...
...
@@ -22,8 +23,8 @@ template <typename T, typename Context>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>
&
starts
,
const
std
::
vector
<
int64_t
>
&
ends
,
const
ScalarArray
&
starts
,
const
ScalarArray
&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
);
...
...
paddle/phi/ops/compat/slice_sig.cc
浏览文件 @
586671ea
...
...
@@ -17,19 +17,155 @@
namespace
phi
{
KernelSignature
SliceOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensor"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensor"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensor"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
}
else
if
(
ctx
.
InputSize
(
"StartsTensorList"
)
>
0
)
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensorList"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensorList"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensorList"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
}
else
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
}
}
KernelSignature
SliceGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensor"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensor"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensor"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
else
if
(
ctx
.
InputSize
(
"StartsTensorList"
)
>
0
)
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensorList"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensorList"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensorList"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
else
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
{
return
KernelSignature
(
"slice_grad"
,
{
GradVarName
(
"Out"
)},
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
}
}
// namespace phi
...
...
paddle/pten/kernels/slice_kernel.h
浏览文件 @
586671ea
...
...
@@ -14,6 +14,7 @@
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
...
...
@@ -22,8 +23,8 @@ template <typename T, typename Context>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>
&
starts
,
const
std
::
vector
<
int64_t
>
&
ends
,
const
ScalarArray
&
starts
,
const
ScalarArray
&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
);
...
...
python/paddle/fluid/tests/unittests/test_slice_op.py
浏览文件 @
586671ea
...
...
@@ -55,721 +55,746 @@ class TestSliceOp(OpTest):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# class TestCase1(TestSliceOp):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 2]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[-3:3, 0:100, 2:-1, :]
# class TestCase2(TestSliceOp):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[-3:3, 0:100, :, 2:-1]
# # 1.2 with attr(decrease)
# class TestSliceOp_decs_dim(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': self.input}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 3, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[1, 0:3, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 1, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0, 1]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[1, 0, 2:4, :]
# class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-1, 0, 2]
# self.ends = [1000000, 1, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0, 1]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[-1, 0, 2:4, :]
# class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 7]).astype("float64")
# self.starts = [0, 1, 2, 3]
# self.ends = [1, 2, 3, 4]
# self.axes = [0, 1, 2, 3]
# self.decrease_axis = [0, 1, 2, 3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[0, 1, 2, 3:4]
# class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-1]
# self.ends = [1000000]
# self.axes = [3]
# self.decrease_axis = [3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[:, :, :, -1]
# class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [0, 1, 2, 3]
# self.ends = [1, 2, 3, 4]
# self.axes = [0, 1, 2, 3]
# self.decrease_axis = [0, 1, 2, 3]
# self.infer_flags = [1, 1, 1]
# self.out = self.input[0, 1, 2, 3:4]
# # Situation 2: starts(list, have tensor), ends(list, no tensor)
# # without attr(decrease)
# class TestSliceOp_starts_ListTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# starts_tensor = []
# for index, ele in enumerate(self.starts):
# starts_tensor.append(("x" + str(index), np.ones(
# (1)).astype('int64') * ele))
# self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts_infer,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [3, 3, 4]
# self.axes = [0, 1, 2]
# self.infer_flags = [-1, 1, -1]
# self.out = self.input[1:3, 0:3, 2:4, :]
# self.starts_infer = [-1, 0, -1]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 2: starts(list, have tensor), ends(list, no tensor)
# # with attr(decrease)
# class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# starts_tensor = []
# for index, ele in enumerate(self.starts):
# starts_tensor.append(("x" + str(index), np.ones(
# (1)).astype('int32') * ele))
# self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts_infer,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 3, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0]
# self.infer_flags = [1, -1, 1]
# self.out = self.input[1, 0:3, 2:4, :]
# self.starts_infer = [1, -1, 2]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# class TestSliceOp_decs_dim_5_starts_ListTensor(
# TestSliceOp_decs_dim_starts_ListTensor):
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [-1]
# self.ends = [1000000]
# self.axes = [3]
# self.decrease_axis = [3]
# self.infer_flags = [-1]
# self.out = self.input[:, :, :, -1]
# self.starts_infer = [-1]
# # Situation 3: starts(tensor), ends(list, no tensor)
# # with attr(decrease)
# class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int32")
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 3, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1, 0:3, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 4: starts(tensor), ends(tensor)
# # without attr(decrease)
# class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int64"),
# "EndsTensor": np.array(
# self.ends, dtype="int32")
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# #'ends': self.ends_infer,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [3, 3, 4]
# self.axes = [0, 1, 2]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1:3, 0:3, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 5: starts(tensor), ends(tensor)
# # with attr(decrease)
# class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int32"),
# "EndsTensor": np.array(
# self.ends, dtype="int32")
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# #'ends': self.ends,
# 'infer_flags': self.infer_flags,
# 'decrease_axis': self.decrease_axis,
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [2, 1, 4]
# self.axes = [0, 1, 2]
# self.decrease_axis = [0, 1]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1, 0, 2:4, :]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Situation 6: starts(tensor), ends(list, have tensor)
# # without attr(decrease)
# class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# ends_tensor = []
# for index, ele in enumerate(self.ends):
# ends_tensor.append(("y" + str(index), np.ones(
# (1)).astype('int32') * ele))
# self.inputs = {
# 'Input': self.input,
# "StartsTensor": np.array(
# self.starts, dtype="int32"),
# 'EndsTensorList': ends_tensor
# }
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# #'starts': self.starts,
# 'ends': self.ends_infer,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.input = np.random.random([3, 4, 5, 6]).astype("float64")
# self.starts = [1, 0, 2]
# self.ends = [3, 3, 4]
# self.axes = [0, 1, 2]
# self.infer_flags = [-1, -1, -1]
# self.out = self.input[1:3, 0:3, 2:4, :]
# self.ends_infer = [-1, 3, 4]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out', max_relative_error=0.006)
# # Test CUDA float16
# @unittest.skipIf(not core.is_compiled_with_cuda(),
# "core is not compiled with CUDA")
# class TestFP16(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': self.input}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.dtype = "float16"
# self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 3]
# self.out = self.input[-3:3, 0:100, :, 2:-1]
# self.infer_flags = [1, 1, 1]
# def test_check_output(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_output_with_place(place, atol=1e-5)
# def test_check_grad_normal(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_grad_with_place(
# place, ['Input'], 'Out', max_relative_error=0.006)
# @unittest.skipIf(not core.is_compiled_with_cuda(),
# "core is not compiled with CUDA")
# class TestFP16_2(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': self.input}
# self.outputs = {'Out': self.out}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.dtype = "float16"
# self.input = np.random.random([3, 4, 10]).astype(self.dtype)
# self.starts = [0]
# self.ends = [1]
# self.axes = [1]
# self.out = self.input[:, 0:1, :]
# self.infer_flags = [1]
# def test_check_output(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_output_with_place(place, atol=1e-5)
# def test_check_grad_normal(self):
# place = core.CUDAPlace(0)
# if core.is_float16_supported(place):
# self.check_grad_with_place(
# place, ['Input'],
# 'Out',
# max_relative_error=0.006,
# numeric_grad_delta=0.5)
# class TestBF16(OpTest):
# def setUp(self):
# self.op_type = "slice"
# self.config()
# self.inputs = {'Input': convert_float_to_uint16(self.input)}
# self.outputs = {'Out': convert_float_to_uint16(self.out)}
# self.attrs = {
# 'axes': self.axes,
# 'starts': self.starts,
# 'ends': self.ends,
# 'infer_flags': self.infer_flags
# }
# def config(self):
# self.dtype = np.uint16
# self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
# self.starts = [-3, 0, 2]
# self.ends = [3, 100, -1]
# self.axes = [0, 1, 3]
# self.out = self.input[-3:3, 0:100, :, 2:-1]
# self.infer_flags = [1, 1, 1]
# def test_check_output(self):
# self.check_output()
# def test_check_grad_normal(self):
# self.check_grad(['Input'], 'Out')
# # Test python API
# class TestSliceAPI(unittest.TestCase):
# def test_1(self):
# input = np.random.random([3, 4, 5, 6]).astype("float64")
# minus_1 = fluid.layers.fill_constant([1], "int32", -1)
# minus_3 = fluid.layers.fill_constant([1], "int64", -3)
# starts = fluid.layers.data(
# name='starts', shape=[1, 3], append_batch_size=False)
# ends = fluid.layers.data(
# name='ends', shape=[3], append_batch_size=False)
# x = fluid.layers.data(
# name="x",
# shape=[3, 4, 5, 6],
# append_batch_size=False,
# dtype="float64")
# # value_int64 is greater than 2147483647 which is the max of int32
# value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)
# out_1 = fluid.layers.slice(
# x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1])
# out_2 = fluid.layers.slice(
# x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1])
# out_3 = fluid.layers.slice(
# x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1])
# out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
# out_5 = x[-3:3, 0:100, 2:-1]
# out_6 = x[minus_3:3, 0:100, :, 2:-1]
# out_7 = x[minus_1, 0:100, :, 2:minus_1]
# exe = fluid.Executor(place=fluid.CPUPlace())
# res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
# fluid.default_main_program(),
# feed={
# "x": input,
# 'starts': np.array([-3, 0, 2]).astype("int32"),
# 'ends': np.array([3, 100, -1]).astype("int32")
# },
# fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
# assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
# assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
# assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
# assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
# assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
# assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
# assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])
# class TestSliceApiWithTensor(unittest.TestCase):
# def test_starts_ends_is_tensor(self):
# with paddle.fluid.dygraph.guard():
# a = paddle.rand(shape=[4, 5, 6], dtype='float32')
# axes = [0, 1, 2]
# starts = [-3, 0, 2]
# ends = [3, 2, 4]
# a_1 = paddle.slice(
# a,
# axes=axes,
# starts=paddle.to_tensor(
# starts, dtype='int32'),
# ends=paddle.to_tensor(
# ends, dtype='int32'))
# a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)
# self.assertTrue(np.array_equal(a_1.numpy(), a_2.numpy()))
# def test_bool_tensor(self):
# with paddle.fluid.dygraph.guard():
# array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
# tt = paddle.to_tensor(array)
# tt.stop_gradient = False
# starts = [0, 1, 2]
# ends = [3, 5, 4]
# axes = [0, 1, 2]
# y_paddle = paddle.slice(tt, axes, starts, ends)
# y_np = tt[0:3, 1:5, 2:4]
# self.assertTrue(paddle.bool == y_paddle.dtype)
# self.assertTrue(np.array_equal(y_paddle.numpy(), y_np))
# class TestSliceApiWithLoDTensorArray(unittest.TestCase):
# def setUp(self):
# self.shape = (3, 4)
# self.data = np.random.random(size=self.shape).astype('float32')
# self.idx = 0
# self.start = 0
# self.end = 2
# self.axis = 1
# self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
# ) else fluid.CPUPlace()
# self.exe = fluid.Executor(self.place)
# def set_program_and_run(self, main_program, case_num):
# with fluid.program_guard(main_program):
# x = [
# fluid.data(
# name='x0', shape=self.shape, dtype="float32"), fluid.data(
# name='x1', shape=self.shape, dtype="float32"),
# fluid.data(
# name='x2', shape=self.shape, dtype="float32")
# ]
# for each_x in x:
# each_x.stop_gradient = False
# arr = layers.create_array(dtype="float32")
# for i in range(3):
# idx = layers.array_length(arr)
# arr = layers.array_write(x=x[i], i=idx, array=arr)
# if case_num == 1:
# self.sliced_arr = output = arr[0]
# elif case_num == 2:
# end = fluid.layers.array_length(
# arr) - 1 # dtype of end is int64
# self.sliced_arr = slice_arr = arr[self.start:end]
# output, _ = fluid.layers.tensor_array_to_tensor(
# slice_arr, axis=self.axis, use_stack=True)
# elif case_num == 3:
# value_int64 = fluid.layers.fill_constant([1], "int64",
# 2147483648)
# self.sliced_arr = slice_arr = arr[self.start:value_int64]
# output, _ = fluid.layers.tensor_array_to_tensor(
# slice_arr, axis=self.axis, use_stack=True)
# loss = fluid.layers.reduce_sum(output)
# fluid.backward.append_backward(loss)
# g_vars = list(
# map(main_program.global_block().var,
# [each_x.name + "@GRAD" for each_x in x]))
# self.out, self.g_x0, self.g_x1, self.g_x2 = \
# self.exe.run(main_program,
# feed = {'x0': self.data,
# 'x1': self.data,
# 'x2': self.data},
# fetch_list=[output] + g_vars)
# def test_case_1(self):
# main_program = fluid.Program()
# self.set_program_and_run(main_program, 1)
# self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
# self.assertEqual(self.sliced_arr.shape, self.shape)
# self.assertTrue(np.array_equal(self.out, self.data))
# self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x1, np.zeros_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))
# def test_case_2(self):
# main_program = fluid.Program()
# self.set_program_and_run(main_program, 2)
# self.assertTrue(
# self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
# self.assertEqual(self.sliced_arr.shape, self.shape)
# self.assertTrue(
# np.array_equal(
# self.out, np.stack(
# [self.data, self.data], axis=self.axis)))
# self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))
# def test_case_3(self):
# main_program = fluid.Program()
# self.set_program_and_run(main_program, 3)
# self.assertTrue(
# self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
# self.assertEqual(self.sliced_arr.shape, self.shape)
# self.assertTrue(
# np.array_equal(
# self.out,
# np.stack(
# [self.data, self.data, self.data], axis=self.axis)))
# self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
# self.assertTrue(np.array_equal(self.g_x2, np.ones_like(self.data)))
# class TestImperativeVarBaseGetItem(unittest.TestCase):
# def test_getitem_with_long(self):
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = fluid.dygraph.to_variable(data)
# sliced = var[:, 10:, :var.shape[1]] # var.shape[1] is 80L here
# self.assertEqual(sliced.shape, [2, 70, 80])
# sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
# self.assertEqual(sliced.shape, [2, 78, 78])
# def test_getitem_with_float(self):
# def test_float_in_slice_item():
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = fluid.dygraph.to_variable(data)
# sliced = var[:, 1.1:, :var.shape[1]]
# self.assertRaises(Exception, test_float_in_slice_item)
# def test_float_in_index():
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = fluid.dygraph.to_variable(data)
# sliced = var[1.1]
# self.assertRaises(Exception, test_float_in_index)
# class TestInferShape(unittest.TestCase):
# def test(self):
# x = paddle.ones(shape=[3, 4, 5])
# x.desc.set_shape([3, -1, 5])
# self.assertEqual(x.shape, (3, -1, 5))
# out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
# self.assertEqual(out0.shape, (3, 3, 5))
# def test_axis_less_than_zero(self):
# # Using paddle.disable_static will make other unittests fail.
# with fluid.dygraph.guard():
# x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
# x = paddle.to_tensor(x_arr)
# pp_slice = paddle.slice(x, [100, ], [0], [1])
# np_slice = x_arr[:, :, 0:1]
# self.assertTrue(np.array_equal(pp_slice, np_slice))
# pp_slice = paddle.slice(x, (-100, ), [0], [1])
# np_slice = x_arr[0:1]
# self.assertTrue(np.array_equal(pp_slice, np_slice))
# x_arr = np.array([], dtype=np.float32)
# x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))
# starts = paddle.to_tensor(
# np.reshape(
# np.array(
# [], dtype=np.int32), (0, )))
# ends = paddle.to_tensor(
# np.reshape(
# np.array(
# [], dtype=np.int32), (0, )))
# with self.assertRaises(ValueError):
# paddle.slice(x, [-1000000], starts, ends)
# with self.assertRaises(ValueError):
# paddle.slice(x, [1000000], starts, ends)
# with self.assertRaises(ValueError):
# paddle.slice(x, [], starts, ends)
# with self.assertRaises(ValueError):
# paddle.slice(x, 0, starts, ends)
# @unittest.skipIf(not core.is_compiled_with_cuda(),
# "core is not compiled with CUDA")
# class TestImperativeCUDAPinnedInput(unittest.TestCase):
# def test_input_cuda_pinned_var(self):
# with fluid.dygraph.guard():
# data = np.random.random((2, 80, 16128)).astype('float32')
# var = core.VarBase(
# value=data,
# name='',
# persistable=False,
# place=fluid.CUDAPinnedPlace(),
# zero_copy=False)
# sliced = var[:, 10:, :var.shape[1]]
# self.assertEqual(sliced.shape, [2, 70, 80])
class
TestCase1
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:]
class
TestCase2
(
TestSliceOp
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
# 1.2 with attr(decrease)
class
TestSliceOp_decs_dim
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
# def test_check_output(self):
# self.check_output()
def
test_check_grad_normal
(
self
):
print
(
self
.
input
.
size
)
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestSliceOp_decs_dim_2
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_3
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
1
,
0
,
2
]
self
.
ends
=
[
1000000
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
-
1
,
0
,
2
:
4
,
:]
class
TestSliceOp_decs_dim_4
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
7
]).
astype
(
"float64"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
class
TestSliceOp_decs_dim_5
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
class
TestSliceOp_decs_dim_6
(
TestSliceOp_decs_dim
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
0
,
1
,
2
,
3
]
self
.
ends
=
[
1
,
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
,
3
]
self
.
decrease_axis
=
[
0
,
1
,
2
,
3
]
self
.
infer_flags
=
[
1
,
1
,
1
]
self
.
out
=
self
.
input
[
0
,
1
,
2
,
3
:
4
]
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class
TestSliceOp_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int64'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
self
.
starts_infer
=
[
-
1
,
0
,
-
1
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
starts_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
starts
):
starts_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
'StartsTensorList'
:
starts_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts_infer
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
1
,
-
1
,
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
self
.
starts_infer
=
[
1
,
-
1
,
2
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
class
TestSliceOp_decs_dim_5_starts_ListTensor
(
TestSliceOp_decs_dim_starts_ListTensor
):
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
-
1
]
self
.
ends
=
[
1000000
]
self
.
axes
=
[
3
]
self
.
decrease_axis
=
[
3
]
self
.
infer_flags
=
[
-
1
]
self
.
out
=
self
.
input
[:,
:,
:,
-
1
]
self
.
starts_infer
=
[
-
1
]
# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 4: starts(tensor), ends(tensor)
# without attr(decrease)
class
TestSliceOp_starts_OneTensor_ends_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int64"
),
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends_infer,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 5: starts(tensor), ends(tensor)
# with attr(decrease)
class
TestSliceOp_decs_dim_starts_and_ends_OneTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
"EndsTensor"
:
np
.
array
(
self
.
ends
,
dtype
=
"int32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
#'ends': self.ends,
'infer_flags'
:
self
.
infer_flags
,
'decrease_axis'
:
self
.
decrease_axis
,
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
2
,
1
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
decrease_axis
=
[
0
,
1
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
,
0
,
2
:
4
,
:]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class
TestSliceOp_starts_OneTensor_ends_ListTensor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
ends_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
ends
):
ends_tensor
.
append
((
"y"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
'Input'
:
self
.
input
,
"StartsTensor"
:
np
.
array
(
self
.
starts
,
dtype
=
"int32"
),
'EndsTensorList'
:
ends_tensor
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
#'starts': self.starts,
'ends'
:
self
.
ends_infer
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
self
.
starts
=
[
1
,
0
,
2
]
self
.
ends
=
[
3
,
3
,
4
]
self
.
axes
=
[
0
,
1
,
2
]
self
.
infer_flags
=
[
-
1
,
-
1
,
-
1
]
self
.
out
=
self
.
input
[
1
:
3
,
0
:
3
,
2
:
4
,
:]
self
.
ends_infer
=
[
-
1
,
3
,
4
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
# Test CUDA float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFP16_2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
self
.
input
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
input
=
np
.
random
.
random
([
3
,
4
,
10
]).
astype
(
self
.
dtype
)
self
.
starts
=
[
0
]
self
.
ends
=
[
1
]
self
.
axes
=
[
1
]
self
.
out
=
self
.
input
[:,
0
:
1
,
:]
self
.
infer_flags
=
[
1
]
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
def
test_check_grad_normal
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Out'
,
max_relative_error
=
0.006
,
numeric_grad_delta
=
0.5
)
class
TestBF16
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"slice"
self
.
config
()
self
.
inputs
=
{
'Input'
:
convert_float_to_uint16
(
self
.
input
)}
self
.
outputs
=
{
'Out'
:
convert_float_to_uint16
(
self
.
out
)}
self
.
attrs
=
{
'axes'
:
self
.
axes
,
'starts'
:
self
.
starts
,
'ends'
:
self
.
ends
,
'infer_flags'
:
self
.
infer_flags
}
def
config
(
self
):
self
.
dtype
=
np
.
uint16
self
.
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
np
.
float32
)
self
.
starts
=
[
-
3
,
0
,
2
]
self
.
ends
=
[
3
,
100
,
-
1
]
self
.
axes
=
[
0
,
1
,
3
]
self
.
out
=
self
.
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
]
self
.
infer_flags
=
[
1
,
1
,
1
]
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Input'
],
'Out'
)
# Test python API
class
TestSliceAPI
(
unittest
.
TestCase
):
def
test_1
(
self
):
input
=
np
.
random
.
random
([
3
,
4
,
5
,
6
]).
astype
(
"float64"
)
minus_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
-
1
)
minus_3
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
-
3
)
starts
=
fluid
.
layers
.
data
(
name
=
'starts'
,
shape
=
[
1
,
3
],
append_batch_size
=
False
)
ends
=
fluid
.
layers
.
data
(
name
=
'ends'
,
shape
=
[
3
],
append_batch_size
=
False
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
,
4
,
5
,
6
],
append_batch_size
=
False
,
dtype
=
"float64"
)
# value_int64 is greater than 2147483647 which is the max of int32
value_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2147483648
)
out_1
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
[
-
3
,
0
,
2
],
ends
=
[
value_int64
,
100
,
-
1
])
out_2
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
-
1
])
out_3
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
3
],
starts
=
[
minus_3
,
0
,
2
],
ends
=
[
3
,
100
,
minus_1
])
out_4
=
fluid
.
layers
.
slice
(
x
,
axes
=
[
0
,
1
,
2
],
starts
=
starts
,
ends
=
ends
)
out_5
=
x
[
-
3
:
3
,
0
:
100
,
2
:
-
1
]
out_6
=
x
[
minus_3
:
3
,
0
:
100
,
:,
2
:
-
1
]
out_7
=
x
[
minus_1
,
0
:
100
,
:,
2
:
minus_1
]
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
input
,
'starts'
:
np
.
array
([
-
3
,
0
,
2
]).
astype
(
"int32"
),
'ends'
:
np
.
array
([
3
,
100
,
-
1
]).
astype
(
"int32"
)
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
])
assert
np
.
array_equal
(
res_1
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_2
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_3
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_4
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_5
,
input
[
-
3
:
3
,
0
:
100
,
2
:
-
1
,
:])
assert
np
.
array_equal
(
res_6
,
input
[
-
3
:
3
,
0
:
100
,
:,
2
:
-
1
])
assert
np
.
array_equal
(
res_7
,
input
[
-
1
,
0
:
100
,
:,
2
:
-
1
])
class
TestSliceApiWithTensor
(
unittest
.
TestCase
):
def
test_starts_ends_is_tensor
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
():
a
=
paddle
.
rand
(
shape
=
[
4
,
5
,
6
],
dtype
=
'float32'
)
axes
=
[
0
,
1
,
2
]
starts
=
[
-
3
,
0
,
2
]
ends
=
[
3
,
2
,
4
]
a_1
=
paddle
.
slice
(
a
,
axes
=
axes
,
starts
=
paddle
.
to_tensor
(
starts
,
dtype
=
'int32'
),
ends
=
paddle
.
to_tensor
(
ends
,
dtype
=
'int32'
))
a_2
=
paddle
.
slice
(
a
,
axes
=
axes
,
starts
=
starts
,
ends
=
ends
)
self
.
assertTrue
(
np
.
array_equal
(
a_1
.
numpy
(),
a_2
.
numpy
()))
def
test_bool_tensor
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
():
array
=
(
np
.
arange
(
60
).
reshape
([
3
,
4
,
5
])
%
3
).
astype
(
'bool'
)
tt
=
paddle
.
to_tensor
(
array
)
tt
.
stop_gradient
=
False
starts
=
[
0
,
1
,
2
]
ends
=
[
3
,
5
,
4
]
axes
=
[
0
,
1
,
2
]
y_paddle
=
paddle
.
slice
(
tt
,
axes
,
starts
,
ends
)
y_np
=
tt
[
0
:
3
,
1
:
5
,
2
:
4
]
self
.
assertTrue
(
paddle
.
bool
==
y_paddle
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
y_paddle
.
numpy
(),
y_np
))
class
TestSliceApiWithLoDTensorArray
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
shape
=
(
3
,
4
)
self
.
data
=
np
.
random
.
random
(
size
=
self
.
shape
).
astype
(
'float32'
)
self
.
idx
=
0
self
.
start
=
0
self
.
end
=
2
self
.
axis
=
1
self
.
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
def
set_program_and_run
(
self
,
main_program
,
case_num
):
with
fluid
.
program_guard
(
main_program
):
x
=
[
fluid
.
data
(
name
=
'x0'
,
shape
=
self
.
shape
,
dtype
=
"float32"
),
fluid
.
data
(
name
=
'x1'
,
shape
=
self
.
shape
,
dtype
=
"float32"
),
fluid
.
data
(
name
=
'x2'
,
shape
=
self
.
shape
,
dtype
=
"float32"
)
]
for
each_x
in
x
:
each_x
.
stop_gradient
=
False
arr
=
layers
.
create_array
(
dtype
=
"float32"
)
for
i
in
range
(
3
):
idx
=
layers
.
array_length
(
arr
)
arr
=
layers
.
array_write
(
x
=
x
[
i
],
i
=
idx
,
array
=
arr
)
if
case_num
==
1
:
self
.
sliced_arr
=
output
=
arr
[
0
]
elif
case_num
==
2
:
end
=
fluid
.
layers
.
array_length
(
arr
)
-
1
# dtype of end is int64
self
.
sliced_arr
=
slice_arr
=
arr
[
self
.
start
:
end
]
output
,
_
=
fluid
.
layers
.
tensor_array_to_tensor
(
slice_arr
,
axis
=
self
.
axis
,
use_stack
=
True
)
elif
case_num
==
3
:
value_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
2147483648
)
self
.
sliced_arr
=
slice_arr
=
arr
[
self
.
start
:
value_int64
]
output
,
_
=
fluid
.
layers
.
tensor_array_to_tensor
(
slice_arr
,
axis
=
self
.
axis
,
use_stack
=
True
)
loss
=
fluid
.
layers
.
reduce_sum
(
output
)
fluid
.
backward
.
append_backward
(
loss
)
g_vars
=
list
(
map
(
main_program
.
global_block
().
var
,
[
each_x
.
name
+
"@GRAD"
for
each_x
in
x
]))
self
.
out
,
self
.
g_x0
,
self
.
g_x1
,
self
.
g_x2
=
\
self
.
exe
.
run
(
main_program
,
feed
=
{
'x0'
:
self
.
data
,
'x1'
:
self
.
data
,
'x2'
:
self
.
data
},
fetch_list
=
[
output
]
+
g_vars
)
def
test_case_1
(
self
):
main_program
=
fluid
.
Program
()
self
.
set_program_and_run
(
main_program
,
1
)
self
.
assertTrue
(
self
.
sliced_arr
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
self
.
assertEqual
(
self
.
sliced_arr
.
shape
,
self
.
shape
)
self
.
assertTrue
(
np
.
array_equal
(
self
.
out
,
self
.
data
))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x0
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x1
,
np
.
zeros_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x2
,
np
.
zeros_like
(
self
.
data
)))
def
test_case_2
(
self
):
main_program
=
fluid
.
Program
()
self
.
set_program_and_run
(
main_program
,
2
)
self
.
assertTrue
(
self
.
sliced_arr
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
)
self
.
assertEqual
(
self
.
sliced_arr
.
shape
,
self
.
shape
)
self
.
assertTrue
(
np
.
array_equal
(
self
.
out
,
np
.
stack
(
[
self
.
data
,
self
.
data
],
axis
=
self
.
axis
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x0
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x1
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x2
,
np
.
zeros_like
(
self
.
data
)))
def
test_case_3
(
self
):
main_program
=
fluid
.
Program
()
self
.
set_program_and_run
(
main_program
,
3
)
self
.
assertTrue
(
self
.
sliced_arr
.
type
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
)
self
.
assertEqual
(
self
.
sliced_arr
.
shape
,
self
.
shape
)
self
.
assertTrue
(
np
.
array_equal
(
self
.
out
,
np
.
stack
(
[
self
.
data
,
self
.
data
,
self
.
data
],
axis
=
self
.
axis
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x0
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x1
,
np
.
ones_like
(
self
.
data
)))
self
.
assertTrue
(
np
.
array_equal
(
self
.
g_x2
,
np
.
ones_like
(
self
.
data
)))
class
TestImperativeVarBaseGetItem
(
unittest
.
TestCase
):
def
test_getitem_with_long
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[:,
10
:,
:
var
.
shape
[
1
]]
# var.shape[1] is 80L here
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
70
,
80
])
sliced
=
var
[:,
var
.
shape
[
0
]:,
var
.
shape
[
0
]:
var
.
shape
[
1
]]
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
78
,
78
])
def
test_getitem_with_float
(
self
):
def
test_float_in_slice_item
():
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[:,
1.1
:,
:
var
.
shape
[
1
]]
self
.
assertRaises
(
Exception
,
test_float_in_slice_item
)
def
test_float_in_index
():
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
fluid
.
dygraph
.
to_variable
(
data
)
sliced
=
var
[
1.1
]
self
.
assertRaises
(
Exception
,
test_float_in_index
)
class
TestInferShape
(
unittest
.
TestCase
):
def
test
(
self
):
x
=
paddle
.
ones
(
shape
=
[
3
,
4
,
5
])
x
.
desc
.
set_shape
([
3
,
-
1
,
5
])
self
.
assertEqual
(
x
.
shape
,
(
3
,
-
1
,
5
))
out0
=
paddle
.
slice
(
x
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
3
])
self
.
assertEqual
(
out0
.
shape
,
(
3
,
3
,
5
))
def
test_axis_less_than_zero
(
self
):
# Using paddle.disable_static will make other unittests fail.
with
fluid
.
dygraph
.
guard
():
x_arr
=
np
.
arange
(
0
,
24
,
dtype
=
np
.
float32
).
reshape
([
2
,
3
,
4
])
x
=
paddle
.
to_tensor
(
x_arr
)
pp_slice
=
paddle
.
slice
(
x
,
[
100
,
],
[
0
],
[
1
])
np_slice
=
x_arr
[:,
:,
0
:
1
]
self
.
assertTrue
(
np
.
array_equal
(
pp_slice
,
np_slice
))
pp_slice
=
paddle
.
slice
(
x
,
(
-
100
,
),
[
0
],
[
1
])
np_slice
=
x_arr
[
0
:
1
]
self
.
assertTrue
(
np
.
array_equal
(
pp_slice
,
np_slice
))
x_arr
=
np
.
array
([],
dtype
=
np
.
float32
)
x
=
paddle
.
to_tensor
(
np
.
reshape
(
x_arr
,
(
0
,
0
,
0
)))
starts
=
paddle
.
to_tensor
(
np
.
reshape
(
np
.
array
(
[],
dtype
=
np
.
int32
),
(
0
,
)))
ends
=
paddle
.
to_tensor
(
np
.
reshape
(
np
.
array
(
[],
dtype
=
np
.
int32
),
(
0
,
)))
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[
-
1000000
],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[
1000000
],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
[],
starts
,
ends
)
with
self
.
assertRaises
(
ValueError
):
paddle
.
slice
(
x
,
0
,
starts
,
ends
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestImperativeCUDAPinnedInput
(
unittest
.
TestCase
):
def
test_input_cuda_pinned_var
(
self
):
with
fluid
.
dygraph
.
guard
():
data
=
np
.
random
.
random
((
2
,
80
,
16128
)).
astype
(
'float32'
)
var
=
core
.
VarBase
(
value
=
data
,
name
=
''
,
persistable
=
False
,
place
=
fluid
.
CUDAPinnedPlace
(),
zero_copy
=
False
)
sliced
=
var
[:,
10
:,
:
var
.
shape
[
1
]]
self
.
assertEqual
(
sliced
.
shape
,
[
2
,
70
,
80
])
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录