Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
586671ea
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“d742ca85143f756294c816704dfede0299c0ee23”上不存在“git@gitcode.net:diandianxiyu/soar.git”
提交
586671ea
编写于
3月 11, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix error
上级
d35f5882
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
1086 addition
and
751 deletion
+1086
-751
paddle/fluid/operators/slice_op.h
paddle/fluid/operators/slice_op.h
+161
-2
paddle/phi/kernels/gpu/slice_grad_kernel.cu.cc
paddle/phi/kernels/gpu/slice_grad_kernel.cu.cc
+2
-1
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
+22
-15
paddle/phi/kernels/impl/slice_kernel_impl.h
paddle/phi/kernels/impl/slice_kernel_impl.h
+5
-2
paddle/phi/kernels/slice_grad_kernel.h
paddle/phi/kernels/slice_grad_kernel.h
+4
-2
paddle/phi/kernels/slice_kernel.h
paddle/phi/kernels/slice_kernel.h
+3
-2
paddle/phi/ops/compat/slice_sig.cc
paddle/phi/ops/compat/slice_sig.cc
+146
-10
paddle/pten/kernels/slice_kernel.h
paddle/pten/kernels/slice_kernel.h
+3
-2
python/paddle/fluid/tests/unittests/test_slice_op.py
python/paddle/fluid/tests/unittests/test_slice_op.py
+740
-715
未找到文件。
paddle/fluid/operators/slice_op.h
浏览文件 @
586671ea
...
...
@@ -28,10 +28,103 @@ using Variable = framework::Variable;
using
LoDTensorArray
=
framework
::
LoDTensorArray
;
using
DDim
=
framework
::
DDim
;
inline
void
DealTensorArray
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
bool
out_is_array
)
{
auto
in_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
// If the input is LoDTensorArray, the rank of input is 1.
int64_t
in_size
=
in_array
->
size
();
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
in_size
)
:
starts
[
0
];
int64_t
end
=
ends
[
0
]
<
0
?
(
ends
[
0
]
+
in_size
)
:
ends
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
max
(
end
,
static_cast
<
int64_t
>
(
0
));
end
=
std
::
min
(
end
,
in_size
);
if
(
starts
[
0
]
==
-
1
&&
end
==
0
)
{
end
=
start
+
1
;
}
PADDLE_ENFORCE_GT
(
end
,
start
,
platform
::
errors
::
InvalidArgument
(
"Attr(ends) should be greater than attr(starts) in "
"slice op. But received end = %d, start = %d."
,
ends
[
0
],
starts
[
0
]));
int64_t
out_size
=
end
-
start
;
if
(
out_is_array
)
{
auto
out_array
=
ctx
.
Output
<
LoDTensorArray
>
(
"Out"
);
out_array
->
resize
(
out_size
);
for
(
int
i
=
0
;
i
<
out_size
;
++
i
)
{
auto
*
out_tensor
=
&
out_array
->
at
(
i
);
auto
in_tensor
=
in_array
->
at
(
i
+
start
);
out_tensor
->
set_lod
(
in_tensor
.
lod
());
if
(
in_tensor
.
memory_size
()
>
0
)
{
paddle
::
framework
::
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out_tensor
);
}
else
{
VLOG
(
10
)
<<
"WARNING: The input tensor 'x_tensor' holds no memory, so "
"nothing has been written to output array["
<<
i
<<
"]."
;
}
}
}
else
{
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
in_tensor
=
in_array
->
at
(
start
);
paddle
::
framework
::
TensorCopy
(
in_tensor
,
ctx
.
GetPlace
(),
out
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
SliceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Variable
*
input_var
=
ctx
.
InputVar
(
"Input"
);
Variable
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
bool
input_is_array
=
input_var
->
IsType
<
LoDTensorArray
>
();
bool
out_is_array
=
out_var
->
IsType
<
LoDTensorArray
>
();
auto
axes_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
axes
(
axes_int
.
begin
(),
axes_int
.
end
());
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
auto
decrease_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"decrease_axis"
);
auto
infer_flags
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"infer_flags"
);
// Step 1: Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
PADDLE_ENFORCE_EQ
(
starts
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of starts must be equal to the size of axes."
));
PADDLE_ENFORCE_EQ
(
ends
.
size
(),
axes
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The size of ends must be equal to the size of axes."
));
// Step 2: Compute output
if
(
input_is_array
)
{
DealTensorArray
(
ctx
,
starts
,
ends
,
out_is_array
);
return
;
}
}
private:
};
...
...
@@ -39,7 +132,73 @@ class SliceKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
SliceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
axes
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
starts_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"starts"
);
auto
ends_int
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ends"
);
std
::
vector
<
int64_t
>
starts
(
starts_int
.
begin
(),
starts_int
.
end
());
std
::
vector
<
int64_t
>
ends
(
ends_int
.
begin
(),
ends_int
.
end
());
// Get the accurate attribute value of starts and ends
auto
starts_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"StartsTensorList"
);
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
starts
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"StartsTensor"
));
}
else
if
(
starts_tensor_list
.
size
()
>
0
)
{
starts
=
GetDataFromTensorList
<
int64_t
>
(
starts_tensor_list
);
}
auto
ends_tensor_list
=
ctx
.
MultiInput
<
Tensor
>
(
"EndsTensorList"
);
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
ends
=
GetDataFromTensor
<
int64_t
>
(
ctx
.
Input
<
Tensor
>
(
"EndsTensor"
));
}
else
if
(
ends_tensor_list
.
size
()
>
0
)
{
ends
=
GetDataFromTensorList
<
int64_t
>
(
ends_tensor_list
);
}
Variable
*
d_input_var
=
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Input"
));
const
Variable
*
d_out_var
=
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
bool
d_input_is_array
=
d_input_var
->
IsType
<
LoDTensorArray
>
();
bool
d_out_is_array
=
d_out_var
->
IsType
<
LoDTensorArray
>
();
if
(
d_input_is_array
)
{
auto
*
input_array
=
ctx
.
Input
<
LoDTensorArray
>
(
"Input"
);
auto
*
d_in_arr
=
ctx
.
Output
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Input"
));
int64_t
d_in_size
=
input_array
->
size
();
d_in_arr
->
resize
(
d_in_size
);
// If the input is LoDTensorArray, the rank of input is 1.
// So only use the 0th element of starts.
int64_t
start
=
starts
[
0
]
<
0
?
(
starts
[
0
]
+
d_in_size
)
:
starts
[
0
];
start
=
std
::
max
(
start
,
static_cast
<
int64_t
>
(
0
));
// set zero
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
functor
;
for
(
int
i
=
0
;
i
<
d_in_size
;
++
i
)
{
auto
dim
=
input_array
->
at
(
i
).
dims
();
d_in_arr
->
at
(
i
).
Resize
(
dim
);
d_in_arr
->
at
(
i
).
mutable_data
<
T
>
(
ctx
.
GetPlace
());
functor
(
reinterpret_cast
<
const
DeviceContext
&>
(
dev_ctx
),
&
d_in_arr
->
at
(
i
),
static_cast
<
T
>
(
0
));
}
if
(
d_out_is_array
)
{
auto
*
d_out_arr
=
ctx
.
Input
<
LoDTensorArray
>
(
framework
::
GradVarName
(
"Out"
));
int
d_out_size
=
d_out_arr
->
size
();
for
(
int
i
=
0
;
i
<
d_out_size
;
++
i
)
{
paddle
::
framework
::
TensorCopy
(
d_out_arr
->
at
(
i
),
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
+
i
)));
}
}
else
{
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
paddle
::
framework
::
TensorCopy
(
*
d_out
,
ctx
.
GetPlace
(),
&
(
d_in_arr
->
at
(
start
)));
}
return
;
}
}
private:
};
...
...
paddle/phi/kernels/gpu/slice_grad_kernel.cu.cc
浏览文件 @
586671ea
...
...
@@ -29,4 +29,5 @@ PD_REGISTER_KERNEL(slice_grad,
double
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
,
phi
::
dtype
::
bfloat16
)
{}
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/impl/slice_grad_kernel_impl.h
浏览文件 @
586671ea
...
...
@@ -30,6 +30,8 @@ void LaunchEigenPadding(
const
DDim
&
out_dims
,
const
Eigen
::
array
<
std
::
pair
<
int64_t
,
int64_t
>
,
D
>&
paddings
)
{
auto
&
place
=
*
context
.
template
eigen_device
();
LOG
(
ERROR
)
<<
D
<<
"
\t
"
<<
in_dims
;
LOG
(
ERROR
)
<<
out_dims
;
auto
d_in_t
=
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
*
d_input
,
in_dims
);
auto
d_out_t
=
EigenTensor
<
T
,
D
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>::
From
(
...
...
@@ -150,12 +152,12 @@ void EigenPaddingCompute(
// the second dimension do not need padding, set padding[1] zero
reshaped_padding
[
1
].
first
=
reshaped_padding
[
1
].
second
=
0
;
LaunchEigenPadding
<
T
,
Context
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
LaunchEigenPadding
<
T
,
Context
,
2
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
else
{
// other dimension need padding
// reshape the dimension of tensor in 3:
...
...
@@ -190,12 +192,13 @@ void EigenPaddingCompute(
// the third dimension do not need padding, set padding[2] zero
reshaped_padding
[
2
].
first
=
reshaped_padding
[
2
].
second
=
0
;
LaunchEigenPadding
<
T
,
Context
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
LOG
(
ERROR
)
<<
"run here"
;
LaunchEigenPadding
<
T
,
Context
,
3
>
(
context
,
d_input
,
reshaped_in_dims
,
d_out
,
reshaped_out_dims
,
reshaped_padding
);
}
}
else
{
// need padding at many dimension, cannot reduce dimension
...
...
@@ -270,14 +273,18 @@ void SliceGradCompute(const Context& ctx,
template
<
typename
T
,
typename
Context
>
void
SliceGradRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
ScalarArray
&
starts_arr
,
const
ScalarArray
&
ends_arr
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
)
{
size_t
rank
=
out_grad
.
dims
().
size
();
size_t
rank
=
input
.
dims
().
size
();
auto
&
starts
=
starts_arr
.
GetData
();
auto
&
ends
=
ends_arr
.
GetData
();
switch
(
rank
)
{
case
1
:
...
...
paddle/phi/kernels/impl/slice_kernel_impl.h
浏览文件 @
586671ea
...
...
@@ -110,13 +110,16 @@ template <typename T, typename Context>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>&
starts
,
const
std
::
vector
<
int64_t
>&
ends
,
const
ScalarArray
&
starts_arr
,
const
ScalarArray
&
ends_arr
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
)
{
int
rank
=
input
.
dims
().
size
();
auto
&
starts
=
starts_arr
.
GetData
();
auto
&
ends
=
ends_arr
.
GetData
();
switch
(
rank
)
{
case
1
:
SliceCompute
<
T
,
Context
,
1
>
(
...
...
paddle/phi/kernels/slice_grad_kernel.h
浏览文件 @
586671ea
...
...
@@ -14,16 +14,18 @@
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SliceGradRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
out_grad
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>
&
starts
,
const
std
::
vector
<
int64_t
>
&
ends
,
const
ScalarArray
&
starts
,
const
ScalarArray
&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
input_grad
);
...
...
paddle/phi/kernels/slice_kernel.h
浏览文件 @
586671ea
...
...
@@ -14,6 +14,7 @@
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
...
...
@@ -22,8 +23,8 @@ template <typename T, typename Context>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>
&
starts
,
const
std
::
vector
<
int64_t
>
&
ends
,
const
ScalarArray
&
starts
,
const
ScalarArray
&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
);
...
...
paddle/phi/ops/compat/slice_sig.cc
浏览文件 @
586671ea
...
...
@@ -17,19 +17,155 @@
namespace
phi
{
KernelSignature
SliceOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensor"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensor"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensor"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
}
else
if
(
ctx
.
InputSize
(
"StartsTensorList"
)
>
0
)
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensorList"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensorList"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"StartsTensorList"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
}
else
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
else
{
return
KernelSignature
(
"slice"
,
{
"Input"
},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
"Out"
});
}
}
}
KernelSignature
SliceGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"slice_grad"
,
{
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
if
(
ctx
.
HasInput
(
"StartsTensor"
))
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensor"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensor"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensor"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
else
if
(
ctx
.
InputSize
(
"StartsTensorList"
)
>
0
)
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensorList"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensorList"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"StartsTensorList"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
else
{
if
(
ctx
.
HasInput
(
"EndsTensor"
))
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"EndsTensor"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
if
(
ctx
.
InputSize
(
"EndsTensorList"
)
>
0
)
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"EndsTensorList"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
else
{
return
KernelSignature
(
"slice_grad"
,
{
"Input"
,
GradVarName
(
"Out"
)},
{
"axes"
,
"starts"
,
"ends"
,
"infer_flags"
,
"decrease_axis"
},
{
GradVarName
(
"Input"
)});
}
}
}
}
// namespace phi
...
...
paddle/pten/kernels/slice_kernel.h
浏览文件 @
586671ea
...
...
@@ -14,6 +14,7 @@
#pragma once
#include "paddle/phi/common/scalar_array.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
...
...
@@ -22,8 +23,8 @@ template <typename T, typename Context>
void
SliceRawKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
std
::
vector
<
int64_t
>&
axes
,
const
std
::
vector
<
int64_t
>
&
starts
,
const
std
::
vector
<
int64_t
>
&
ends
,
const
ScalarArray
&
starts
,
const
ScalarArray
&
ends
,
const
std
::
vector
<
int64_t
>&
infer_flags
,
const
std
::
vector
<
int64_t
>&
decrease_axis
,
DenseTensor
*
out
);
...
...
python/paddle/fluid/tests/unittests/test_slice_op.py
浏览文件 @
586671ea
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录