Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
57e368b8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
57e368b8
编写于
3月 22, 2023
作者:
Z
Zhang Zheng
提交者:
GitHub
3月 22, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "[AMP OP&Test] Support float & bfloat16 when using thrust (#51627)" (#51897)
This reverts commit
3b2cd23a
.
上级
202c06a2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
23 addition
and
89 deletion
+23
-89
paddle/phi/kernels/funcs/inclusive_scan.h
paddle/phi/kernels/funcs/inclusive_scan.h
+0
-20
paddle/phi/kernels/gpu/cumprod_grad_kernel.cu
paddle/phi/kernels/gpu/cumprod_grad_kernel.cu
+19
-47
paddle/phi/kernels/gpu/cumprod_kernel.cu
paddle/phi/kernels/gpu/cumprod_kernel.cu
+4
-22
未找到文件。
paddle/phi/kernels/funcs/inclusive_scan.h
浏览文件 @
57e368b8
...
@@ -33,26 +33,6 @@ namespace cub = hipcub;
...
@@ -33,26 +33,6 @@ namespace cub = hipcub;
namespace
phi
{
namespace
phi
{
namespace
funcs
{
namespace
funcs
{
template
<
typename
T
>
class
CumTypeTrait
{
public:
using
Type
=
T
;
};
template
<
>
class
CumTypeTrait
<
phi
::
dtype
::
float16
>
{
public:
using
Type
=
__half
;
};
#if defined(__CUDACC__) && CUDA_VERSION >= 11000
template
<
>
class
CumTypeTrait
<
phi
::
dtype
::
bfloat16
>
{
public:
using
Type
=
__nv_bfloat16
;
};
#endif
template
<
typename
T
>
template
<
typename
T
>
struct
IsComplex
:
public
std
::
false_type
{};
struct
IsComplex
:
public
std
::
false_type
{};
...
...
paddle/phi/kernels/gpu/cumprod_grad_kernel.cu
浏览文件 @
57e368b8
...
@@ -77,7 +77,7 @@ struct CumprodGradFunctorExceptFirstZero {
...
@@ -77,7 +77,7 @@ struct CumprodGradFunctorExceptFirstZero {
first_zero_idx_
[
outer_idx
*
inner_dim_
+
inner_idx
]
=
0
;
first_zero_idx_
[
outer_idx
*
inner_dim_
+
inner_idx
]
=
0
;
}
}
x_filled_one_
[
idx
]
=
should_fill_one
?
static_cast
<
T
>
(
1
)
:
x_
[
idx
];
x_filled_one_
[
idx
]
=
should_fill_one
?
1
:
x_
[
idx
];
}
}
private:
private:
...
@@ -131,7 +131,6 @@ void CumprodGradKernel(const Context &dev_ctx,
...
@@ -131,7 +131,6 @@ void CumprodGradKernel(const Context &dev_ctx,
const
DenseTensor
&
dout
,
const
DenseTensor
&
dout
,
int
dim
,
int
dim
,
DenseTensor
*
dx
)
{
DenseTensor
*
dx
)
{
using
CumType
=
typename
funcs
::
CumTypeTrait
<
T
>::
Type
;
const
auto
*
y
=
&
out
;
const
auto
*
y
=
&
out
;
const
auto
*
dy
=
&
dout
;
const
auto
*
dy
=
&
dout
;
...
@@ -226,19 +225,15 @@ void CumprodGradKernel(const Context &dev_ctx,
...
@@ -226,19 +225,15 @@ void CumprodGradKernel(const Context &dev_ctx,
.
Allocate
(
numel
*
sizeof
(
T
));
.
Allocate
(
numel
*
sizeof
(
T
));
auto
*
dy_mul_y_reversed_cumsum_data
=
auto
*
dy_mul_y_reversed_cumsum_data
=
reinterpret_cast
<
T
*>
(
dy_mul_y_reversed_cumsum
->
ptr
());
reinterpret_cast
<
T
*>
(
dy_mul_y_reversed_cumsum
->
ptr
());
CumType
*
dy_mul_y_data_cum
=
reinterpret_cast
<
CumType
*>
(
dy_mul_y_data
);
phi
::
funcs
::
InclusiveScan
<
T
,
cub
::
Sum
>
(
dy_mul_y_data
,
CumType
*
dy_mul_y_reversed_cumsum_data_cum
=
dy_mul_y_reversed_cumsum_data
,
reinterpret_cast
<
CumType
*>
(
dy_mul_y_reversed_cumsum_data
);
outer_dim
,
phi
::
funcs
::
InclusiveScan
<
CumType
,
cub
::
Sum
>
(
mid_dim
,
dy_mul_y_data_cum
,
inner_dim
,
dy_mul_y_reversed_cumsum_data_cum
,
static_cast
<
T
>
(
0
),
outer_dim
,
cub
::
Sum
(),
mid_dim
,
/*reverse=*/
true
,
inner_dim
,
dev_ctx
);
static_cast
<
CumType
>
(
0.0
f
),
cub
::
Sum
(),
/*reverse=*/
true
,
dev_ctx
);
// Step 3: calculate the gradient value except the first zero position.
// Step 3: calculate the gradient value except the first zero position.
// The gradient value of the first zero position is filled with out[idx-1],
// The gradient value of the first zero position is filled with out[idx-1],
...
@@ -269,18 +264,14 @@ void CumprodGradKernel(const Context &dev_ctx,
...
@@ -269,18 +264,14 @@ void CumprodGradKernel(const Context &dev_ctx,
// Step 4: calculate cumprod of x_filled_one
// Step 4: calculate cumprod of x_filled_one
auto
*
x_filled_one_cumprod_data
=
auto
*
x_filled_one_cumprod_data
=
dy_mul_y_reversed_cumsum_data
;
// reuse former allocated memory
dy_mul_y_reversed_cumsum_data
;
// reuse former allocated memory
CumType
*
x_filled_one_data_cum
=
phi
::
funcs
::
InclusiveScan
<
T
,
funcs
::
MultiplyFunctor
<
T
>>
(
reinterpret_cast
<
CumType
*>
(
x_filled_one_data
);
x_filled_one_data
,
CumType
*
x_filled_one_cumprod_data_cum
=
x_filled_one_cumprod_data
,
reinterpret_cast
<
CumType
*>
(
x_filled_one_cumprod_data
);
phi
::
funcs
::
InclusiveScan
<
CumType
,
funcs
::
MultiplyFunctor
<
CumType
>>
(
x_filled_one_data_cum
,
x_filled_one_cumprod_data_cum
,
outer_dim
,
outer_dim
,
mid_dim
,
mid_dim
,
inner_dim
,
inner_dim
,
static_cast
<
CumType
>
(
1.0
f
),
static_cast
<
T
>
(
1
),
funcs
::
MultiplyFunctor
<
CumType
>
(),
funcs
::
MultiplyFunctor
<
T
>
(),
/*reverse=*/
false
,
/*reverse=*/
false
,
dev_ctx
);
dev_ctx
);
...
@@ -295,17 +286,13 @@ void CumprodGradKernel(const Context &dev_ctx,
...
@@ -295,17 +286,13 @@ void CumprodGradKernel(const Context &dev_ctx,
funcs
::
MultiplyFunctor
<
T
>
());
funcs
::
MultiplyFunctor
<
T
>
());
auto
*
dy_mul_x_filled_one_cumprod_reversed_cumsum
=
auto
*
dy_mul_x_filled_one_cumprod_reversed_cumsum
=
dy_mul_y_reversed_cumsum_data
;
// reuse former allocated memory
dy_mul_y_reversed_cumsum_data
;
// reuse former allocated memory
CumType
*
dy_mul_x_filled_one_cumprod_cum
=
phi
::
funcs
::
InclusiveScan
<
T
,
cub
::
Sum
>
(
reinterpret_cast
<
CumType
*>
(
dy_mul_x_filled_one_cumprod
);
dy_mul_x_filled_one_cumprod
,
CumType
*
dy_mul_x_filled_one_cumprod_reversed_cumsum_cum
=
dy_mul_x_filled_one_cumprod_reversed_cumsum
,
reinterpret_cast
<
CumType
*>
(
dy_mul_x_filled_one_cumprod_reversed_cumsum
);
phi
::
funcs
::
InclusiveScan
<
CumType
,
cub
::
Sum
>
(
dy_mul_x_filled_one_cumprod_cum
,
dy_mul_x_filled_one_cumprod_reversed_cumsum_cum
,
outer_dim
,
outer_dim
,
mid_dim
,
mid_dim
,
inner_dim
,
inner_dim
,
static_cast
<
CumType
>
(
0.0
f
),
static_cast
<
T
>
(
0
),
cub
::
Sum
(),
cub
::
Sum
(),
/*reverse=*/
true
,
/*reverse=*/
true
,
dev_ctx
);
dev_ctx
);
...
@@ -324,7 +311,6 @@ void CumprodGradKernel(const Context &dev_ctx,
...
@@ -324,7 +311,6 @@ void CumprodGradKernel(const Context &dev_ctx,
}
// namespace phi
}
// namespace phi
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL
(
cumprod_grad
,
PD_REGISTER_KERNEL
(
cumprod_grad
,
GPU
,
GPU
,
ALL_LAYOUT
,
ALL_LAYOUT
,
...
@@ -335,17 +321,3 @@ PD_REGISTER_KERNEL(cumprod_grad,
...
@@ -335,17 +321,3 @@ PD_REGISTER_KERNEL(cumprod_grad,
int64_t
,
int64_t
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
phi
::
dtype
::
complex
<
double
>
)
{}
#else
PD_REGISTER_KERNEL
(
cumprod_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
CumprodGradKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
#endif
paddle/phi/kernels/gpu/cumprod_kernel.cu
浏览文件 @
57e368b8
...
@@ -28,7 +28,6 @@ void CumprodKernel(const Context &dev_ctx,
...
@@ -28,7 +28,6 @@ void CumprodKernel(const Context &dev_ctx,
const
DenseTensor
&
input
,
const
DenseTensor
&
input
,
int
dim
,
int
dim
,
DenseTensor
*
out
)
{
DenseTensor
*
out
)
{
using
CumType
=
typename
funcs
::
CumTypeTrait
<
T
>::
Type
;
const
auto
*
x
=
&
input
;
const
auto
*
x
=
&
input
;
auto
*
y
=
out
;
auto
*
y
=
out
;
size_t
outer_dim
,
mid_dim
,
inner_dim
;
size_t
outer_dim
,
mid_dim
,
inner_dim
;
...
@@ -40,22 +39,19 @@ void CumprodKernel(const Context &dev_ctx,
...
@@ -40,22 +39,19 @@ void CumprodKernel(const Context &dev_ctx,
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
dev_ctx
.
template
Alloc
<
T
>(
y
);
auto
*
y_data
=
dev_ctx
.
template
Alloc
<
T
>(
y
);
const
CumType
*
x_ptr
=
reinterpret_cast
<
const
CumType
*>
(
x_data
);
phi
::
funcs
::
InclusiveScan
(
x_data
,
CumType
*
y_ptr
=
reinterpret_cast
<
CumType
*>
(
y_data
);
y_data
,
phi
::
funcs
::
InclusiveScan
(
x_ptr
,
y_ptr
,
outer_dim
,
outer_dim
,
mid_dim
,
mid_dim
,
inner_dim
,
inner_dim
,
static_cast
<
CumType
>
(
1.0
f
),
static_cast
<
T
>
(
1
),
funcs
::
MultiplyFunctor
<
CumType
>
(),
funcs
::
MultiplyFunctor
<
T
>
(),
/*reverse=*/
false
,
/*reverse=*/
false
,
dev_ctx
);
dev_ctx
);
}
}
}
// namespace phi
}
// namespace phi
#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL
(
cumprod
,
PD_REGISTER_KERNEL
(
cumprod
,
GPU
,
GPU
,
ALL_LAYOUT
,
ALL_LAYOUT
,
...
@@ -66,17 +62,3 @@ PD_REGISTER_KERNEL(cumprod,
...
@@ -66,17 +62,3 @@ PD_REGISTER_KERNEL(cumprod,
int64_t
,
int64_t
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
phi
::
dtype
::
complex
<
double
>
)
{}
#else
PD_REGISTER_KERNEL
(
cumprod
,
GPU
,
ALL_LAYOUT
,
phi
::
CumprodKernel
,
float
,
double
,
int
,
int64_t
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录