Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
56fded1b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
56fded1b
编写于
5月 15, 2023
作者:
R
ronnywang
提交者:
GitHub
5月 15, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CustomDevice] add inference MP support, PART3 (#53703)
上级
e04f8d4a
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
156 addition
and
10 deletion
+156
-10
paddle/fluid/pybind/custom_device_py.cc
paddle/fluid/pybind/custom_device_py.cc
+13
-0
python/paddle/distributed/auto_parallel/cluster.py
python/paddle/distributed/auto_parallel/cluster.py
+17
-10
python/paddle/distributed/auto_parallel/process_group.py
python/paddle/distributed/auto_parallel/process_group.py
+13
-0
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+1
-0
python/paddle/distributed/fleet/utils/hybrid_parallel_util.py
...on/paddle/distributed/fleet/utils/hybrid_parallel_util.py
+1
-0
python/paddle/distributed/ps/utils/collective_transpiler.py
python/paddle/distributed/ps/utils/collective_transpiler.py
+33
-0
python/paddle/distributed/transpiler/collective.py
python/paddle/distributed/transpiler/collective.py
+32
-0
python/paddle/hapi/model.py
python/paddle/hapi/model.py
+31
-0
python/paddle/incubate/optimizer/distributed_fused_lamb.py
python/paddle/incubate/optimizer/distributed_fused_lamb.py
+15
-0
未找到文件。
paddle/fluid/pybind/custom_device_py.cc
浏览文件 @
56fded1b
...
...
@@ -29,6 +29,19 @@ namespace pybind {
void
BindCustomDevicePy
(
py
::
module
*
m_ptr
)
{
auto
&
m
=
*
m_ptr
;
// Bind Methods
m
.
def
(
"_get_device_total_memory"
,
[](
const
std
::
string
&
device_type
,
int
device_id
)
{
auto
place
=
paddle
::
platform
::
CustomPlace
(
device_type
,
device_id
==
-
1
?
phi
::
DeviceManager
::
GetDevice
(
device_type
)
:
device_id
);
size_t
total
=
0
,
free
=
0
;
phi
::
DeviceManager
::
MemoryStats
(
place
,
&
total
,
&
free
);
return
total
;
},
py
::
arg
(
"device_type"
),
py
::
arg
(
"device_id"
)
=
-
1
);
m
.
def
(
"_get_current_custom_device_stream"
,
[](
const
std
::
string
&
device_type
,
int
device_id
)
{
...
...
python/paddle/distributed/auto_parallel/cluster.py
浏览文件 @
56fded1b
...
...
@@ -883,17 +883,24 @@ def get_default_cluster(json_config=None):
assert
global_device_count
%
local_device_count
==
0
node_count
=
int
(
global_device_count
)
//
local_device_count
gpu_info
=
paddle
.
device
.
cuda
.
get_device_properties
()
assert
gpu_info
,
"Auto parallel just runs on gpu now."
gpu_name
=
gpu_info
.
name
try
:
re_result
=
re
.
split
(
r
'[ , -]'
,
gpu_name
)
gpu_model
=
re_result
[
1
]
memory
=
int
(
re_result
[
-
1
][:
-
2
])
except
:
memory
=
int
(
gpu_info
.
total_memory
)
//
(
1000
**
3
)
if
os
.
getenv
(
"PADDLE_DISTRI_BACKEND"
,
None
)
==
"xccl"
:
gpu_name
=
os
.
getenv
(
"PADDLE_XCCL_BACKEND"
,
None
)
gpu_model
=
gpu_name
memory
=
int
(
paddle
.
fluid
.
core
.
_get_device_total_memory
(
gpu_name
)
)
//
(
1000
**
3
)
else
:
gpu_info
=
paddle
.
device
.
cuda
.
get_device_properties
()
assert
gpu_info
,
"Auto parallel just runs on gpu now."
gpu_name
=
gpu_info
.
name
try
:
re_result
=
re
.
split
(
r
'[ , -]'
,
gpu_name
)
gpu_model
=
re_result
[
1
]
memory
=
int
(
re_result
[
-
1
][:
-
2
])
except
:
memory
=
int
(
gpu_info
.
total_memory
)
//
(
1000
**
3
)
gpu_model
=
gpu_name
logger
.
info
(
"Node Count: {}, Local Device Size: {}, GPU Model: {}, GPU Memory: {}GB, World size: {}, EndPoint: {}."
.
format
(
...
...
python/paddle/distributed/auto_parallel/process_group.py
浏览文件 @
56fded1b
...
...
@@ -148,6 +148,11 @@ class ProcessGroup:
core
.
BKCLParallelContext
(
strategy
,
place
).
init_with_ring_id
(
ring_id
)
elif
genv
.
device_type
in
core
.
get_all_custom_device_type
():
place
=
core
.
CustomPlace
(
genv
.
device_type
,
genv
.
device_id
)
core
.
XCCLParallelContext
(
strategy
,
place
).
init_with_ring_id
(
ring_id
)
else
:
raise
AssertionError
(
'No CUDA device found'
)
...
...
@@ -162,6 +167,14 @@ class ProcessGroup:
paddle
.
set_device
(
'xpu:%d'
%
paddle
.
distributed
.
ParallelEnv
().
dev_id
)
elif
genv
.
device_type
in
core
.
get_all_custom_device_type
():
paddle
.
set_device
(
'%s:%d'
%
(
paddle
.
distributed
.
ParallelEnv
().
device_type
,
paddle
.
distributed
.
ParallelEnv
().
dev_id
,
),
)
tmp
=
(
paddle
.
to_tensor
([
1
],
dtype
=
"int32"
)
if
in_dygraph_mode
()
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
56fded1b
...
...
@@ -1040,6 +1040,7 @@ class ShardingOptimizer(MetaOptimizerBase):
"c_calc_comm_stream"
,
"c_gen_nccl_id"
,
"c_gen_bkcl_id"
,
"c_gen_xccl_id"
,
"c_comm_init"
,
'send_v2'
,
'recv_v2'
,
...
...
python/paddle/distributed/fleet/utils/hybrid_parallel_util.py
浏览文件 @
56fded1b
...
...
@@ -167,6 +167,7 @@ def broadcast_input_data(hcg, *inputs, **kwargs):
place
=
paddle
.
CUDAPlace
(
dev_idx
)
elif
dev
in
paddle
.
device
.
get_all_custom_device_type
():
place
=
paddle
.
CustomPlace
(
dev
,
dev_idx
)
dev
=
'custom'
else
:
place
=
eval
(
f
"paddle.
{
dev
.
upper
()
}
Place"
)(
dev_idx
)
...
...
python/paddle/distributed/ps/utils/collective_transpiler.py
浏览文件 @
56fded1b
...
...
@@ -14,6 +14,7 @@
import
os
import
paddle
from
paddle.distributed.fleet.base.private_helper_function
import
(
wait_server_ready
,
)
...
...
@@ -204,6 +205,38 @@ class Collective:
self
.
op_role_key
:
OpRole
.
Forward
,
},
)
elif
(
paddle
.
distributed
.
ParallelEnv
().
device_type
in
paddle
.
device
.
get_all_custom_device_type
()
):
xccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'xccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
)
endpoint_to_index_map
=
{
e
:
idx
for
idx
,
e
in
enumerate
(
endpoints
)}
block
.
append_op
(
type
=
'c_gen_xccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
xccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
self
.
op_role_key
:
OpRole
.
Forward
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
xccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
ring_id
,
self
.
op_role_key
:
OpRole
.
Forward
,
},
)
def
_broadcast_params
(
self
):
block
=
self
.
startup_program
.
global_block
()
...
...
python/paddle/distributed/transpiler/collective.py
浏览文件 @
56fded1b
...
...
@@ -14,6 +14,7 @@
import
os
import
paddle
from
paddle.distributed.fleet.base.private_helper_function
import
(
wait_server_ready
,
)
...
...
@@ -200,6 +201,37 @@ class Collective:
self
.
op_role_key
:
OpRole
.
Forward
,
},
)
elif
(
paddle
.
distributed
.
ParallelEnv
().
device_type
in
paddle
.
device
.
get_all_custom_device_type
()
):
xccl_id_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'xccl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
)
block
.
append_op
(
type
=
'c_gen_xccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
xccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
self
.
op_role_key
:
OpRole
.
Forward
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
xccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
ring_id
,
self
.
op_role_key
:
OpRole
.
Forward
,
},
)
def
_broadcast_params
(
self
):
block
=
self
.
startup_program
.
global_block
()
...
...
python/paddle/hapi/model.py
浏览文件 @
56fded1b
...
...
@@ -184,6 +184,37 @@ def init_communicator(
'ring_id'
:
0
,
},
)
elif
(
paddle
.
distributed
.
ParallelEnv
().
device_type
in
paddle
.
device
.
get_all_custom_device_type
()
):
xccl_id_var
=
block
.
create_var
(
name
=
fluid
.
unique_name
.
generate
(
'xccl_id'
),
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
,
)
block
.
append_op
(
type
=
'c_gen_xccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
xccl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
xccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
0
,
},
)
def
prepare_distributed_context
(
place
=
None
):
...
...
python/paddle/incubate/optimizer/distributed_fused_lamb.py
浏览文件 @
56fded1b
...
...
@@ -58,6 +58,21 @@ def init_communicator(block, rank, ranks, ring_id):
'ring_id'
:
ring_id
,
},
)
elif
(
paddle
.
distributed
.
ParallelEnv
().
device_type
in
paddle
.
device
.
get_all_custom_device_type
()
):
block
.
append_op
(
type
=
'c_gen_xccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
comm_id_var
},
attrs
=
{
'rank'
:
local_rank
,
'endpoint'
:
cur_ep
,
'other_endpoints'
:
other_eps
,
'ring_id'
:
ring_id
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
comm_id_var
},
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录