未验证 提交 56c54ccc 编写于 作者: Z zhupengyang 提交者: GitHub

Op(prelu/relu/f.relu/f.log_softmax) error message enhancement (#23792)

上级 c2a60bb1
...@@ -31,10 +31,11 @@ class PReluOp : public framework::OperatorWithKernel { ...@@ -31,10 +31,11 @@ class PReluOp : public framework::OperatorWithKernel {
auto x_dim = ctx->GetInputDim("X"); auto x_dim = ctx->GetInputDim("X");
std::string mode = ctx->Attrs().Get<std::string>("mode"); std::string mode = ctx->Attrs().Get<std::string>("mode");
if (mode == "all") { if (mode == "all") {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), 1,
product(ctx->GetInputDim("Alpha")), 1,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"For mode 'all', size of weight Alpha must be one.")); "For mode 'all', size of weight Alpha must be one. "
"But recevied alpha's size: %d.",
product(ctx->GetInputDim("Alpha"))));
} else if (mode == "channel") { } else if (mode == "channel") {
PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), x_dim[1], PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), x_dim[1],
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
...@@ -67,7 +68,11 @@ class PReluOp : public framework::OperatorWithKernel { ...@@ -67,7 +68,11 @@ class PReluOp : public framework::OperatorWithKernel {
"x's size: %d.", "x's size: %d.",
alpha_product, x_product)); alpha_product, x_product));
} else { } else {
PADDLE_THROW("Unkown mode %s", mode); PADDLE_THROW(platform::errors::InvalidArgument(
"Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
"But recevied "
"mode: '%s'.",
mode));
} }
ctx->ShareDim("X", /*->*/ "Out"); ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out"); ctx->ShareLoD("X", /*->*/ "Out");
......
...@@ -463,7 +463,7 @@ class TestReluOpError(unittest.TestCase): ...@@ -463,7 +463,7 @@ class TestReluOpError(unittest.TestCase):
def test_errors(self): def test_errors(self):
with program_guard(Program()): with program_guard(Program()):
# The input type must be Variable. # The input type must be Variable.
self.assertRaises(TypeError, fluid.layers.sqrt, 1) self.assertRaises(TypeError, fluid.layers.relu, 1)
# The input dtype must be float16, float32, float64. # The input dtype must be float16, float32, float64.
x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
self.assertRaises(TypeError, fluid.layers.relu, x_int32) self.assertRaises(TypeError, fluid.layers.relu, x_int32)
......
...@@ -23,21 +23,18 @@ from paddle.fluid import Program, program_guard ...@@ -23,21 +23,18 @@ from paddle.fluid import Program, program_guard
from op_test import OpTest, skip_check_grad_ci from op_test import OpTest, skip_check_grad_ci
class TestPReluAPIError(unittest.TestCase): class TestPReluOpError(unittest.TestCase):
def test_errors(self): def test_errors(self):
with fluid.program_guard(fluid.Program(), fluid.Program()): with program_guard(Program()):
layer = fluid.PRelu( # The input type must be Variable.
mode='all', self.assertRaises(TypeError, fluid.layers.prelu, 0.1, 'all')
param_attr=fluid.ParamAttr( # The input dtype must be float16, float32, float64.
initializer=fluid.initializer.Constant(1.0))) x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
# the input must be Variable. self.assertRaises(TypeError, fluid.layers.prelu, x_int32, 'all')
x0 = fluid.create_lod_tensor( # support the input dtype is float32
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) x_fp16 = fluid.layers.data(
self.assertRaises(TypeError, layer, x0) name='x_fp16', shape=[12, 10], dtype='float32')
# the input dtype must be float32 fluid.layers.prelu(x_fp16, 'all')
data_t = fluid.data(
name="input", shape=[5, 200, 100, 100], dtype="float64")
self.assertRaises(TypeError, layer, data_t)
class PReluTest(OpTest): class PReluTest(OpTest):
...@@ -79,20 +76,18 @@ class PReluTest(OpTest): ...@@ -79,20 +76,18 @@ class PReluTest(OpTest):
self.check_grad(['X', 'Alpha'], 'Out') self.check_grad(['X', 'Alpha'], 'Out')
# TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues @skip_check_grad_ci(
if six.PY2:
@skip_check_grad_ci(
reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
) )
class TestModeAll(PReluTest): class TestModeAll(PReluTest):
def init_input_shape(self): def init_input_shape(self):
self.x_shape = (2, 3, 4, 5) self.x_shape = (2, 3, 4, 5)
def init_attr(self): def init_attr(self):
self.attrs = {'mode': "all"} self.attrs = {'mode': "all"}
class TestModeElt(PReluTest):
class TestModeElt(PReluTest):
def init_input_shape(self): def init_input_shape(self):
self.x_shape = (3, 2, 5, 10) self.x_shape = (3, 2, 5, 10)
...@@ -100,18 +95,36 @@ if six.PY2: ...@@ -100,18 +95,36 @@ if six.PY2:
self.attrs = {'mode': "element"} self.attrs = {'mode': "element"}
class TestPReluOpError(unittest.TestCase): def prelu_t(x, mode, param_attr=None, name=None):
def test_errors(self): helper = fluid.layer_helper.LayerHelper('prelu', **locals())
with program_guard(Program()): alpha_shape = [1, x.shape[1], 1, 1]
# The input type must be Variable. dtype = helper.input_dtype(input_param_name='x')
self.assertRaises(TypeError, fluid.layers.prelu, 1, 'all') alpha = helper.create_parameter(
# The input dtype must be float16, float32, float64. attr=helper.param_attr,
x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') shape=alpha_shape,
self.assertRaises(TypeError, fluid.layers.prelu, x_int32, 'all') dtype='float32',
# support the input dtype is float32 is_bias=False,
x_fp16 = fluid.layers.data( default_initializer=fluid.initializer.ConstantInitializer(0.25))
name='x_fp16', shape=[12, 10], dtype='float32') out = helper.create_variable_for_type_inference(dtype)
fluid.layers.prelu(x_fp16, 'all') helper.append_op(
type="prelu",
inputs={"X": x,
'Alpha': alpha},
attrs={"mode": mode},
outputs={"Out": out})
return out
# error message test if mode is not one of 'all', 'channel', 'element'
class TestModeError(unittest.TestCase):
def test_mode_error(self):
main_program = Program()
with fluid.program_guard(main_program, Program()):
x = fluid.data(name='x', shape=[2, 3, 4, 5])
try:
y = prelu_t(x, 'any')
except Exception as e:
assert (e.args[0].find('InvalidArgumentError') != -1)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -206,8 +206,10 @@ def relu(input, inplace=False, name=None): ...@@ -206,8 +206,10 @@ def relu(input, inplace=False, name=None):
) )
return core.ops.relu(input) return core.ops.relu(input)
helper = LayerHelper('relu', **locals()) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
'relu')
helper = LayerHelper('relu', **locals())
outs = input if inplace else helper.create_variable_for_type_inference( outs = input if inplace else helper.create_variable_for_type_inference(
input.dtype) input.dtype)
helper.append_op(type='relu', inputs={'X': [input]}, outputs={'Out': outs}) helper.append_op(type='relu', inputs={'X': [input]}, outputs={'Out': outs})
...@@ -263,7 +265,7 @@ def sigmoid(input, inplace=False, name=None): ...@@ -263,7 +265,7 @@ def sigmoid(input, inplace=False, name=None):
) )
return core.ops.sigmoid(input) return core.ops.sigmoid(input)
check_variable_and_dtype(input, 'X', ['float16', 'float32', 'float64'], check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
'sigmoid') 'sigmoid')
helper = LayerHelper("sigmoid", **locals()) helper = LayerHelper("sigmoid", **locals())
outputs = helper.create_variable_for_type_inference(input.dtype) outputs = helper.create_variable_for_type_inference(input.dtype)
...@@ -329,8 +331,11 @@ def log_softmax(input, axis=None, dtype=None, name=None): ...@@ -329,8 +331,11 @@ def log_softmax(input, axis=None, dtype=None, name=None):
False) False)
return core.ops.log(outs_softmax) return core.ops.log(outs_softmax)
helper = LayerHelper("log_softmax", **locals()) if dtype is None:
check_variable_and_dtype(
input, 'input', ['float16', 'float32', 'float64'], 'log_softmax')
helper = LayerHelper("log_softmax", **locals())
outs_cast = input outs_cast = input
if dtype is not None: if dtype is not None:
outs_cast = helper.create_variable_for_type_inference(dtype) outs_cast = helper.create_variable_for_type_inference(dtype)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册