Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
56bbfd1a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
56bbfd1a
编写于
10月 26, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add deconv3d op
上级
aa3de357
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
399 addition
and
1 deletion
+399
-1
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+3
-1
paddle/operators/conv3dtranspose_op.cc
paddle/operators/conv3dtranspose_op.cc
+113
-0
paddle/operators/conv3dtranspose_op.cu
paddle/operators/conv3dtranspose_op.cu
+24
-0
paddle/operators/conv3dtranspose_op.h
paddle/operators/conv3dtranspose_op.h
+259
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
56bbfd1a
...
...
@@ -123,7 +123,8 @@ set(DEPS_OPS
sum_op
pool_op
pool_with_index_op
lstm_op
)
lstm_op
conv3dtranspose_op
)
op_library
(
recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
...
...
@@ -135,6 +136,7 @@ op_library(sum_op DEPS net_op)
op_library
(
pool_op DEPS pooling
)
op_library
(
pool_with_index_op DEPS pooling
)
op_library
(
lstm_op DEPS sequence2batch lstm_compute
)
op_library
(
conv3dtranspose_op DEPS vol2col
)
list
(
REMOVE_ITEM GENERAL_OPS
${
DEPS_OPS
}
)
foreach
(
src
${
GENERAL_OPS
}
)
...
...
paddle/operators/conv3dtranspose_op.cc
0 → 100644
浏览文件 @
56bbfd1a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv3dtranspose_op.h"
namespace
paddle
{
namespace
operators
{
void
Conv3DTransposeOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of Conv3DTransposeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Filter"
),
"Input(Filter) of Conv3DTransposeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
"Output(Output) of Conv3DTransposeOp should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
paddings
[
i
],
0
,
"No Padding allowed in conv transpose op."
);
}
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
5
,
"Conv3DTransposeOp input should be 5-D tensor."
);
PADDLE_ENFORCE_EQ
(
filter_dims
.
size
(),
5
,
"Conv3DTransposeOp filter should be 5-D tensor."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
"input and kernel input dimension should be equal."
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
in_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
filter_dims
.
size
();
++
i
)
{
output_shape
.
push_back
((
in_dims
[
i
+
2
]
-
1
)
*
strides
[
i
]
+
filter_dims
[
i
+
2
]);
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
Conv3DTransposeOpMaker
::
Conv3DTransposeOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(Tensor) The input tensor of convolution transpose operator."
"The format of input tensor is NCDHW. Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and width of "
"feature."
);
AddInput
(
"Filter"
,
"(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMDHW, where C is the number of "
"output image channels, M is the number of input image channels, "
"D, H and W is depth, height and width of filter. "
"We enforce groups number == 1 and padding == 0 in "
"convolution transpose Scenario."
);
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution transpose operator."
"The format of output tensor is also NCDHW."
"Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and "
"width of feature."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution transpose operator."
)
.
SetDefault
({
1
,
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of convolution transpose operator."
)
.
SetDefault
({
0
,
0
,
0
});
AddComment
(
R"DOC(
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC"
);
}
void
Conv3DTransposeOpGrad
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Input"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Input"
),
in_dims
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Filter"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Filter"
),
filter_dims
);
}
}
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
conv3dtranspose
,
ops
::
Conv3DTransposeOp
,
ops
::
Conv3DTransposeOpMaker
,
conv3dtranspose_grad
,
ops
::
Conv3DTransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
conv3dtranspose
,
ops
::
GemmConv3DTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
conv3dtranspose_grad
,
ops
::
GemmConv3DTransposeGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/conv3dtranspose_op.cu
0 → 100644
浏览文件 @
56bbfd1a
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv3dtranspose_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
conv3dtranspose
,
ops
::
GemmConv3DTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
conv3dtranspose_grad
,
ops
::
GemmConv3DTransposeGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/conv3dtranspose_op.h
0 → 100644
浏览文件 @
56bbfd1a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
class
Conv3DTransposeOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Conv3DTransposeOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
);
};
class
Conv3DTransposeOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
};
class
Conv3DTransposeOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
};
template
<
typename
Place
,
typename
T
>
class
GemmConv3DTransposeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped, so it should not be constant pointer
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// TODO(chengduo): Paddings can be added in future.
// groups will alway be disabled in conv3dtranspose.
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
m
=
input
->
dims
()[
1
];
const
int
d
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
4
];
const
int
k_d
=
filter
.
dims
()[
2
];
const
int
k_h
=
filter
.
dims
()[
3
];
const
int
k_w
=
filter
.
dims
()[
4
];
const
int
c
=
output
->
dims
()[
1
];
// output channels
const
int
o_d
=
output
->
dims
()[
2
];
const
int
o_h
=
output
->
dims
()[
3
];
const
int
o_w
=
output
->
dims
()[
4
];
paddle
::
operators
::
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
// use col_shape in the vol2col and col2vol calculation
DDim
col_shape
=
{
c
,
k_d
,
k_h
,
k_w
,
d
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_d
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
// convolution transpose: gemm + col2vol (similar to conv-backward on input)
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (M, d * h * w)
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// filter size: (M, c * k_d * k_h * k_w)
// output size: (c, o_d, o_h, o_w)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// col_matrix = filter * input_batch
// of shape (c * k_d * k_h * k_w, d * h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
input_batch
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
col2vol
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
0
,
0
,
0
);
}
}
};
template
<
typename
Place
,
typename
T
>
class
GemmConv3DTransposeGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// Actually, no paddings and groups allowed in conv transpose.
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
m
=
input
->
dims
()[
1
];
const
int
d
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
4
];
const
int
k_d
=
filter
.
dims
()[
2
];
const
int
k_h
=
filter
.
dims
()[
3
];
const
int
k_w
=
filter
.
dims
()[
4
];
const
int
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int
o_d
=
output_grad
->
dims
()[
2
];
const
int
o_h
=
output_grad
->
dims
()[
3
];
const
int
o_w
=
output_grad
->
dims
()[
4
];
// Only vol2col functor required for bp to get to the right shape
paddle
::
operators
::
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
// use col_shape in the vol2col and col2vol calculation
DDim
col_shape
=
{
c
,
k_d
,
k_h
,
k_w
,
d
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape_f
=
{
c
*
d
*
h
*
w
,
k_d
*
k_h
*
k_w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_d
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
// convolution transpose grad on input:
// vol2col + gemm (similar to conv-forward)
// input need to compute gradient
if
(
input_grad
)
{
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
col_matrix
.
Resize
(
col_matrix_shape
);
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (c, o_d * o_h * o_w)
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// filter of size (m, c * k_d * k_h * k_w)
// batch with size (m, d, h, w)
Tensor
input_grad_batch
=
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// vol2col: dy from (c, o_d, o_h, o_w) -> (c * k_d * k_h * k_w, d * h *
// w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
// gemm: dx = filter * dy
// (m, c *k_d * k_h * k_w) * (c * k_d * k_h * k_w, d* h * w) -> (m, c,
// d, h, w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
input_grad_batch
,
T
(
0.0
));
}
}
// filter gradient required
if
(
filter_grad
)
{
Tensor
col_matrix_f
;
col_matrix_f
.
ShareDataWith
(
col
);
DDim
col_matrix_shape_f
=
{
c
*
d
*
h
*
w
,
k_d
*
k_h
*
k_w
};
col_matrix_f
.
Resize
(
col_matrix_shape_f
);
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
filter_grad_
=
*
filter_grad
;
filter_grad_
.
Resize
(
filter_matrix_shape
);
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
filter_grad_
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
// batch with size (c, o_d, o_h, o_w)
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// vol2col: (c * d * h * w, k_d * k_h * k_w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
// gemm: d_filter = x * y_grad^T
// (m, c * d * h * w) * (k_d * k_h * k_w, c * d * h * w) -> (m, c, d, h,
// w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
col_matrix_f
,
true
,
T
(
1.0
),
&
filter_grad_
,
T
(
1.0
));
}
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录