Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
56b5d147
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
56b5d147
编写于
11月 18, 2019
作者:
G
guofei
提交者:
Huihuang Zheng
11月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the error of init variable in StaticRNN when stop_gradient=ON (#21118)
上级
3c98ec90
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
89 addition
and
15 deletion
+89
-15
paddle/fluid/operators/recurrent_op.cc
paddle/fluid/operators/recurrent_op.cc
+3
-5
python/paddle/fluid/tests/unittests/test_recurrent_op.py
python/paddle/fluid/tests/unittests/test_recurrent_op.py
+86
-10
未找到文件。
paddle/fluid/operators/recurrent_op.cc
浏览文件 @
56b5d147
...
...
@@ -635,11 +635,9 @@ class RecurrentGradOpShapeInference : public framework::InferShapeBase {
RecurrentBase
::
kOutputs
);
// In some case the kInitialStates is empty.
if
(
ctx
->
HasInputs
(
RecurrentBase
::
kInitialStates
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
RecurrentBase
::
kInitialStates
)),
true
,
"The output of(%s) should not be empty."
,
framework
::
GradVarName
(
RecurrentBase
::
kInitialStates
));
if
(
ctx
->
HasInputs
(
RecurrentBase
::
kInitialStates
)
&&
ctx
->
HasOutputs
(
framework
::
GradVarName
(
RecurrentBase
::
kInitialStates
)))
{
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
RecurrentBase
::
kInitialStates
),
ctx
->
GetInputsDim
(
RecurrentBase
::
kInitialStates
));
}
...
...
python/paddle/fluid/tests/unittests/test_recurrent_op.py
浏览文件 @
56b5d147
...
...
@@ -123,7 +123,8 @@ class RecurrentOpTest1(unittest.TestCase):
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
,
"h_boot"
}
self
.
feed_data_field
=
{
"x"
,
"h_boot"
}
self
.
grad_data_field
=
self
.
feed_data_field
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -161,7 +162,7 @@ class RecurrentOpTest1(unittest.TestCase):
def
forward
(
self
):
self
.
feed_map
=
{
x
:
create_tensor
(
getattr
(
self
.
py_rnn
,
x
),
self
.
place
)
for
x
in
self
.
data_field
for
x
in
self
.
feed_
data_field
}
exe
=
Executor
(
self
.
place
)
out
=
exe
.
run
(
self
.
main_program
,
...
...
@@ -173,11 +174,11 @@ class RecurrentOpTest1(unittest.TestCase):
def
backward
(
self
):
self
.
feed_map
=
{
x
:
create_tensor
(
getattr
(
self
.
py_rnn
,
x
),
self
.
place
)
for
x
in
self
.
data_field
for
x
in
self
.
feed_
data_field
}
fetch_list
=
[
self
.
main_program
.
global_block
().
var
(
grad_var_name
(
x
))
for
x
in
self
.
data_field
for
x
in
self
.
grad_
data_field
]
exe
=
Executor
(
self
.
place
)
...
...
@@ -195,7 +196,7 @@ class RecurrentOpTest1(unittest.TestCase):
ana_grad
=
[
np
.
array
(
x
)
for
x
in
self
.
backward
()]
num_grad
=
self
.
get_numerical_gradient
()
for
idx
,
name
in
enumerate
(
self
.
data_field
):
for
idx
,
name
in
enumerate
(
self
.
grad_
data_field
):
self
.
assertEqual
(
num_grad
[
idx
].
shape
,
ana_grad
[
idx
].
shape
)
self
.
assertTrue
(
np
.
isclose
(
...
...
@@ -212,7 +213,7 @@ class RecurrentOpTest1(unittest.TestCase):
def
get_numerical_gradient
(
self
,
delta
=
0.005
):
dloss_dout
=
1.0
feed_list
=
[
getattr
(
self
.
py_rnn
,
x
)
for
x
in
self
.
data_field
]
feed_list
=
[
getattr
(
self
.
py_rnn
,
x
)
for
x
in
self
.
grad_
data_field
]
grad_list
=
[
np
.
zeros_like
(
x
)
for
x
in
feed_list
]
for
feed
,
grad
in
zip
(
feed_list
,
grad_list
):
for
f
,
g
in
np
.
nditer
([
feed
,
grad
],
op_flags
=
[
'readwrite'
]):
...
...
@@ -253,7 +254,8 @@ class RecurrentOpTest2(RecurrentOpTest1):
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
,
"h_boot"
,
"W"
,
"U"
}
self
.
feed_data_field
=
{
"x"
,
"h_boot"
,
"W"
,
"U"
}
self
.
grad_data_field
=
self
.
feed_data_field
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -352,7 +354,8 @@ class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
,
"h_boot1"
,
"h_boot2"
}
self
.
feed_data_field
=
{
"x"
,
"h_boot1"
,
"h_boot2"
}
self
.
grad_data_field
=
self
.
feed_data_field
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -435,7 +438,8 @@ class RecurrentOpNoMemBootTest(RecurrentOpTest1):
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
}
self
.
feed_data_field
=
{
"x"
}
self
.
grad_data_field
=
self
.
feed_data_field
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -535,7 +539,8 @@ class RecurrentOpSubBlockTest(RecurrentOpTest1):
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
,
"emb"
,
"w1"
,
"w2"
}
self
.
feed_data_field
=
{
"x"
,
"emb"
,
"w1"
,
"w2"
}
self
.
grad_data_field
=
self
.
feed_data_field
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
...
...
@@ -602,5 +607,76 @@ class RecurrentOpSubBlockTest(RecurrentOpTest1):
return
rnn
()
class
RecurrentOpStopGradientTest
(
RecurrentOpTest1
):
"""
Test RNNOp with stop_gradient = True
equation:
h_t = \sigma (W x_t + U h_{t-1})
weights:
- W
- U
vars:
- x
memories:
- h
output:
- h
"""
input_dim
=
2
batch_size
=
10
sent_len
=
2
def
setUp
(
self
):
self
.
setup_program
()
self
.
feed_data_field
=
{
"x"
,
"h_boot"
,
"W"
,
"U"
}
self
.
grad_data_field
=
{
"x"
,
"W"
,
"U"
}
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
PySimpleRNN2
(
self
.
input_shape
,
self
.
output_shape
)
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
self
.
output
=
layers
.
mean
(
self
.
create_rnn_op
())
def
create_rnn_op
(
self
):
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
dtype
=
"float32"
,
name
=
"x"
,
append_batch_size
=
False
)
x
.
stop_gradient
=
False
h_boot
=
layers
.
data
(
shape
=
[
self
.
input_dim
],
dtype
=
"float32"
,
name
=
"h_boot"
)
h_boot
.
stop_gradient
=
True
rnn
=
layers
.
StaticRNN
()
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
# init doesn't have gradient
x_t
=
rnn
.
step_input
(
x
)
temp_l
=
layers
.
fc
(
input
=
x_t
,
size
=
self
.
input_dim
,
param_attr
=
ParamAttr
(
name
=
"W"
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
1.0
)),
bias_attr
=
False
)
temp_r
=
layers
.
fc
(
input
=
h_pre
,
size
=
self
.
input_dim
,
param_attr
=
ParamAttr
(
name
=
"U"
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0.0
)),
bias_attr
=
False
)
h
=
layers
.
sigmoid
(
x
=
layers
.
elementwise_add
(
temp_l
,
temp_r
))
rnn
.
update_memory
(
h_pre
,
h
)
rnn
.
output
(
h
)
return
rnn
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录