Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
56b04e5b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
56b04e5b
编写于
4月 10, 2018
作者:
_青葱
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into initializer
上级
93940642
b1224da8
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
122 addition
and
105 deletion
+122
-105
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+13
-8
paddle/fluid/framework/details/ssa_graph.h
paddle/fluid/framework/details/ssa_graph.h
+5
-1
paddle/fluid/framework/details/ssa_graph_builder.cc
paddle/fluid/framework/details/ssa_graph_builder.cc
+16
-14
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+2
-2
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+75
-25
paddle/fluid/platform/cuda_helper.h
paddle/fluid/platform/cuda_helper.h
+0
-48
python/paddle/fluid/distribute_transpiler.py
python/paddle/fluid/distribute_transpiler.py
+10
-6
python/setup.py.in
python/setup.py.in
+1
-1
未找到文件。
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
56b04e5b
...
@@ -59,7 +59,11 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
...
@@ -59,7 +59,11 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
auto
graph
=
new
SSAGraph
();
auto
graph
=
new
SSAGraph
();
SSAGraph
&
result
=
*
graph
;
SSAGraph
&
result
=
*
graph
;
std
::
unordered_set
<
std
::
string
>
og_has_been_broadcast
;
std
::
unordered_set
<
std
::
string
>
og_has_been_broadcast
;
result
.
vars_
.
resize
(
places_
.
size
());
// We cannot invoke resize. It is a bug of GCC 4.8
result
.
vars_
=
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
unique_ptr
<
VarHandle
>>>>
(
places_
.
size
());
bool
is_forwarding
=
true
;
bool
is_forwarding
=
true
;
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
...
@@ -147,15 +151,16 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
...
@@ -147,15 +151,16 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
if
(
vars
.
empty
())
{
// This device has no data. continue.
if
(
vars
.
empty
())
{
// This device has no data. continue.
continue
;
continue
;
}
}
auto
*
prev_grad
=
&
vars
[
vars
.
size
()
-
1
];
auto
&
prev_grad
=
vars
[
vars
.
size
()
-
1
];
op_handle
->
AddInput
(
prev_grad
);
op_handle
->
AddInput
(
prev_grad
.
get
()
);
auto
&
var
=
vars
[
vars
.
size
()];
vars
.
emplace_back
(
new
VarHandle
);
var
.
place_
=
p
;
auto
&
var
=
vars
.
back
();
var
.
name_
=
og
;
var
->
place_
=
p
;
var
.
version_
=
vars
.
size
()
-
1
;
var
->
name_
=
og
;
var
->
version_
=
vars
.
size
()
-
1
;
op_handle
->
AddOutput
(
&
var
);
op_handle
->
AddOutput
(
var
.
get
()
);
}
}
#else
#else
PADDLE_ENFORCE
(
"Not implemented"
);
PADDLE_ENFORCE
(
"Not implemented"
);
...
...
paddle/fluid/framework/details/ssa_graph.h
浏览文件 @
56b04e5b
...
@@ -16,6 +16,8 @@
...
@@ -16,6 +16,8 @@
#include <map>
#include <map>
#include <string>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/details/var_handle.h"
...
@@ -24,7 +26,9 @@ namespace framework {
...
@@ -24,7 +26,9 @@ namespace framework {
namespace
details
{
namespace
details
{
struct
SSAGraph
{
struct
SSAGraph
{
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
map
<
int
,
VarHandle
>>>
vars_
;
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
unique_ptr
<
VarHandle
>>>>
vars_
;
// aux variables to represent dependency. Useful to resolve data hazard.
// aux variables to represent dependency. Useful to resolve data hazard.
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
dep_vars_
;
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
dep_vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
ops_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandleBase
>>
ops_
;
...
...
paddle/fluid/framework/details/ssa_graph_builder.cc
浏览文件 @
56b04e5b
...
@@ -27,8 +27,8 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) {
...
@@ -27,8 +27,8 @@ void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) {
auto
it_old
=
name_pair
.
second
.
rbegin
();
auto
it_old
=
name_pair
.
second
.
rbegin
();
++
it_old
;
++
it_old
;
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
for
(;
it_old
!=
name_pair
.
second
.
rend
();
it_new
=
it_old
,
++
it_old
)
{
auto
*
write_op
=
it_new
->
second
.
generated_op_
;
auto
*
write_op
=
(
*
it_new
)
->
generated_op_
;
auto
&
read_ops
=
it_old
->
second
.
pending_ops_
;
auto
&
read_ops
=
(
*
it_old
)
->
pending_ops_
;
for
(
auto
*
read_op
:
read_ops
)
{
for
(
auto
*
read_op
:
read_ops
)
{
// Manually add a dependency var from read_op to write_op;
// Manually add a dependency var from read_op to write_op;
...
@@ -54,14 +54,15 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
...
@@ -54,14 +54,15 @@ VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle(
auto
&
var_holder
=
var_holders
[
each_var_name
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
if
(
var_holder
.
empty
())
{
var_holder
.
emplace_back
(
new
VarHandle
);
auto
&
init_var
=
var_holder
[
0
];
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
->
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
->
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
->
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
init_var
->
version_
=
0
;
var
=
&
init_var
;
var
=
init_var
.
get
()
;
}
else
{
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
var
=
var_holder
.
rbegin
()
->
get
()
;
}
}
return
var
;
return
var
;
}
}
...
@@ -72,11 +73,12 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle,
...
@@ -72,11 +73,12 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle,
size_t
place_offset
)
{
size_t
place_offset
)
{
auto
&
vars
=
graph
->
vars_
[
place_offset
][
each_var_name
];
auto
&
vars
=
graph
->
vars_
[
place_offset
][
each_var_name
];
size_t
version
=
vars
.
size
();
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
vars
.
emplace_back
(
new
VarHandle
());
var
.
version_
=
version
;
auto
&
var
=
vars
.
back
();
var
.
name_
=
each_var_name
;
var
->
version_
=
version
;
var
.
place_
=
place
;
var
->
name_
=
each_var_name
;
op_handle
->
AddOutput
(
&
var
);
var
->
place_
=
place
;
op_handle
->
AddOutput
(
var
.
get
());
}
}
template
<
typename
Callback
>
template
<
typename
Callback
>
...
@@ -84,7 +86,7 @@ void IterAllVar(const SSAGraph &graph, Callback callback) {
...
@@ -84,7 +86,7 @@ void IterAllVar(const SSAGraph &graph, Callback callback) {
for
(
auto
&
each
:
graph
.
vars_
)
{
for
(
auto
&
each
:
graph
.
vars_
)
{
for
(
auto
&
pair1
:
each
)
{
for
(
auto
&
pair1
:
each
)
{
for
(
auto
&
pair2
:
pair1
.
second
)
{
for
(
auto
&
pair2
:
pair1
.
second
)
{
callback
(
pair2
.
second
);
callback
(
*
pair2
);
}
}
}
}
}
}
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
56b04e5b
...
@@ -69,7 +69,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
...
@@ -69,7 +69,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
for
(
auto
&
name_pair
:
var_map
)
{
for
(
auto
&
name_pair
:
var_map
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
InsertPendingVar
(
version_pair
.
second
);
InsertPendingVar
(
*
version_pair
);
}
}
}
}
}
}
...
@@ -95,7 +95,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
...
@@ -95,7 +95,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
for
(
auto
&
var_map
:
graph_
->
vars_
)
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
&
it
->
second
.
rbegin
()
->
second
);
fetched_vars
[
fetch_var_name
].
push_back
(
it
->
second
.
rbegin
()
->
get
()
);
}
}
}
}
}
}
...
...
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
56b04e5b
...
@@ -13,14 +13,15 @@ See the License for the specific language governing permissions and
...
@@ -13,14 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/fluid/platform/transform.h"
#ifdef __NVCC__
#ifdef __NVCC__
#include <cuda.h>
#include <thrust/iterator/iterator_adaptor.h>
#include <thrust/iterator/iterator_adaptor.h>
#include "paddle/fluid/platform/cuda_helper.h"
constexpr
int
ELEMWISE_MAX_BLOCK_DIM
=
1024
;
constexpr
int
ELEMWISE_MAX_BLOCK_DIM
=
1024
;
#endif
#endif
...
@@ -43,35 +44,35 @@ namespace operators {
...
@@ -43,35 +44,35 @@ namespace operators {
*/
*/
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
&
pre
,
int
&
n
,
int
&
post
)
{
int
*
pre
,
int
*
n
,
int
*
post
)
{
pre
=
1
;
*
pre
=
1
;
n
=
1
;
*
n
=
1
;
post
=
1
;
*
post
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
pre
*=
x_dims
[
i
];
(
*
pre
)
*=
x_dims
[
i
];
}
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
],
PADDLE_ENFORCE_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
],
"Broadcast dimension mismatch."
);
"Broadcast dimension mismatch."
);
n
*=
y_dims
[
i
];
(
*
n
)
*=
y_dims
[
i
];
}
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
post
*=
x_dims
[
i
];
(
*
post
)
*=
x_dims
[
i
];
}
}
}
}
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
&
dims
)
{
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
*
dims
)
{
// Remove trailing dimensions of size 1 for y
// Remove trailing dimensions of size 1 for y
auto
actual_dims_size
=
dims
.
size
();
auto
actual_dims_size
=
dims
->
size
();
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
if
(
dims
[
actual_dims_size
-
1
]
!=
1
)
break
;
if
(
(
*
dims
)
[
actual_dims_size
-
1
]
!=
1
)
break
;
}
}
if
(
actual_dims_size
!=
dims
.
size
())
{
if
(
actual_dims_size
!=
dims
->
size
())
{
auto
actual_dims
=
framework
::
vectorize
(
dims
);
auto
actual_dims
=
framework
::
vectorize
(
*
dims
);
actual_dims
.
resize
(
actual_dims_size
);
actual_dims
.
resize
(
actual_dims_size
);
dims
=
framework
::
make_ddim
(
actual_dims
);
*
dims
=
framework
::
make_ddim
(
actual_dims
);
}
}
}
}
...
@@ -159,7 +160,7 @@ class RowwiseTransformIterator<T, platform::CUDADeviceContext>
...
@@ -159,7 +160,7 @@ class RowwiseTransformIterator<T, platform::CUDADeviceContext>
RowwiseTransformIterator
<
T
,
platform
::
CUDADeviceContext
>
,
const
T
*>
RowwiseTransformIterator
<
T
,
platform
::
CUDADeviceContext
>
,
const
T
*>
super_t
;
super_t
;
HOSTDEVICE
RowwiseTransformIterator
(
const
T
*
x
,
int
n
)
HOSTDEVICE
RowwiseTransformIterator
(
const
T
*
x
,
int
n
)
:
super_t
(
x
),
begin_
(
x
),
n_
(
n
)
{};
:
super_t
(
x
),
begin_
(
x
),
n_
(
n
)
{}
friend
class
thrust
::
iterator_core_access
;
friend
class
thrust
::
iterator_core_access
;
private:
private:
...
@@ -179,7 +180,7 @@ class MidWiseTransformIterator<T, platform::CUDADeviceContext>
...
@@ -179,7 +180,7 @@ class MidWiseTransformIterator<T, platform::CUDADeviceContext>
MidWiseTransformIterator
<
T
,
platform
::
CUDADeviceContext
>
,
const
T
*>
MidWiseTransformIterator
<
T
,
platform
::
CUDADeviceContext
>
,
const
T
*>
super_t
;
super_t
;
HOSTDEVICE
MidWiseTransformIterator
(
const
T
*
x
,
int
n
,
int
post
)
HOSTDEVICE
MidWiseTransformIterator
(
const
T
*
x
,
int
n
,
int
post
)
:
super_t
(
x
),
begin_
(
x
),
n_
(
n
),
post_
(
post
)
{};
:
super_t
(
x
),
begin_
(
x
),
n_
(
n
),
post_
(
post
)
{}
friend
class
thrust
::
iterator_core_access
;
friend
class
thrust
::
iterator_core_access
;
private:
private:
...
@@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
...
@@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
}
}
}
}
#ifdef __NVCC__
#ifdef __NVCC__
// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template
<
typename
T
>
__forceinline__
__device__
T
__shfl_down_sync
(
unsigned
,
T
val
,
int
delta
)
{
return
__shfl_down
(
val
,
delta
);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
template
<
typename
T
>
__device__
T
reduceSum
(
T
val
,
int
tid
,
int
len
)
{
// TODO(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__
T
shm
[
32
];
const
int
warpSize
=
32
;
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
tid
<
len
);
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down_sync
(
mask
,
val
,
offset
);
if
(
tid
<
warpSize
)
shm
[
tid
]
=
0
;
__syncthreads
();
if
(
tid
%
warpSize
==
0
)
{
shm
[
tid
/
warpSize
]
=
val
;
}
CREATE_SHFL_MASK
(
mask
,
tid
<
warpSize
);
if
(
tid
<
warpSize
)
{
val
=
shm
[
tid
];
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down_sync
(
mask
,
val
,
offset
);
}
return
val
;
}
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
static
__global__
void
ElemwiseGradBroadcast1CUDAKernel
(
static
__global__
void
ElemwiseGradBroadcast1CUDAKernel
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
h
,
int
w
,
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
h
,
int
w
,
...
@@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel(
...
@@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel(
if
(
dy
)
{
if
(
dy
)
{
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
val
=
platform
::
reduceSum
(
val
,
tid
,
h
);
val
=
reduceSum
(
val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
if
(
threadIdx
.
x
==
0
)
{
dy
[
j
]
=
val
;
dy
[
j
]
=
val
;
}
}
...
@@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel(
...
@@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel(
if
(
dy
)
{
if
(
dy
)
{
int
h
=
pre
*
post
;
int
h
=
pre
*
post
;
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
val
=
platform
::
reduceSum
(
val
,
tid
,
h
);
val
=
reduceSum
(
val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
if
(
threadIdx
.
x
==
0
)
{
dy
[
j
]
=
val
;
dy
[
j
]
=
val
;
}
}
...
@@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
...
@@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
auto
y_dim
=
y
.
dims
();
auto
y_dim
=
y
.
dims
();
axis
=
(
axis
==
-
1
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
);
axis
=
(
axis
==
-
1
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
);
trim_trailing_singular_dims
(
y_dim
);
trim_trailing_singular_dims
(
&
y_dim
);
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
int
pre
,
n
,
post
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
pre
,
n
,
post
);
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
if
(
post
==
1
)
{
int
h
=
pre
;
int
h
=
pre
;
int
w
=
n
;
int
w
=
n
;
...
@@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
...
@@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
}
}
}
}
}
}
}
;
}
template
<
typename
DeviceContext
,
typename
T
,
typename
functor
,
template
<
typename
DeviceContext
,
typename
T
,
typename
functor
,
typename
broadcastfunctor
,
typename
broadcast2functor
>
typename
broadcastfunctor
,
typename
broadcast2functor
>
...
@@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
...
@@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
}
}
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
trim_trailing_singular_dims
(
y_dims
);
trim_trailing_singular_dims
(
&
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
if
(
post
==
1
)
{
broadcastfunctor
f
;
broadcastfunctor
f
;
...
@@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
...
@@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
"Axis should be in range [0, x_dims)"
);
trim_trailing_singular_dims
(
y_dims
);
trim_trailing_singular_dims
(
&
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
if
(
post
==
1
)
{
functor
.
RunRowWise
(
n
,
pre
);
functor
.
RunRowWise
(
n
,
pre
);
return
;
return
;
...
...
paddle/fluid/platform/cuda_helper.h
浏览文件 @
56b04e5b
...
@@ -62,53 +62,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) {
...
@@ -62,53 +62,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) {
}
}
#endif
#endif
// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template
<
typename
T
>
__forceinline__
__device__
T
__shfl_down_sync
(
unsigned
,
T
val
,
int
delta
)
{
return
__shfl_down
(
val
,
delta
);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
template
<
typename
T
>
__device__
T
reduceSum
(
T
val
,
int
tid
,
int
len
)
{
// TODO(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__
T
shm
[
32
];
const
int
warpSize
=
32
;
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
tid
<
len
);
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down_sync
(
mask
,
val
,
offset
);
if
(
tid
<
warpSize
)
shm
[
tid
]
=
0
;
__syncthreads
();
if
(
tid
%
warpSize
==
0
)
{
shm
[
tid
/
warpSize
]
=
val
;
}
CREATE_SHFL_MASK
(
mask
,
tid
<
warpSize
);
if
(
tid
<
warpSize
)
{
val
=
shm
[
tid
];
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
__shfl_down_sync
(
mask
,
val
,
offset
);
}
return
val
;
}
}
// namespace platform
}
// namespace platform
}
// namespace paddle
}
// namespace paddle
python/paddle/fluid/distribute_transpiler.py
浏览文件 @
56b04e5b
...
@@ -278,11 +278,21 @@ class DistributeTranspiler:
...
@@ -278,11 +278,21 @@ class DistributeTranspiler:
# we don't need to create them when grad arrives.
# we don't need to create them when grad arrives.
# change client side var name to origin name by
# change client side var name to origin name by
# removing ".trainer_%d" suffix
# removing ".trainer_%d" suffix
suff_idx
=
v
.
name
.
find
(
".trainer_"
)
suff_idx
=
v
.
name
.
find
(
".trainer_"
)
if
suff_idx
>=
0
:
if
suff_idx
>=
0
:
orig_var_name
=
v
.
name
[:
suff_idx
]
orig_var_name
=
v
.
name
[:
suff_idx
]
else
:
else
:
orig_var_name
=
v
.
name
orig_var_name
=
v
.
name
# NOTE: single_trainer_var must be created for multi-trainer
# case to merge grads from multiple trainers
single_trainer_var
=
\
pserver_program
.
global_block
().
create_var
(
name
=
orig_var_name
,
persistable
=
True
,
type
=
v
.
type
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
if
self
.
trainers
>
1
:
if
self
.
trainers
>
1
:
for
trainer_id
in
xrange
(
self
.
trainers
):
for
trainer_id
in
xrange
(
self
.
trainers
):
var
=
pserver_program
.
global_block
().
create_var
(
var
=
pserver_program
.
global_block
().
create_var
(
...
@@ -293,12 +303,6 @@ class DistributeTranspiler:
...
@@ -293,12 +303,6 @@ class DistributeTranspiler:
shape
=
v
.
shape
)
shape
=
v
.
shape
)
recv_inputs
.
append
(
var
)
recv_inputs
.
append
(
var
)
else
:
else
:
single_trainer_var
=
pserver_program
.
global_block
().
create_var
(
name
=
orig_var_name
,
persistable
=
True
,
type
=
v
.
type
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
recv_inputs
.
append
(
single_trainer_var
)
recv_inputs
.
append
(
single_trainer_var
)
# step3
# step3
...
...
python/setup.py.in
浏览文件 @
56b04e5b
...
@@ -102,7 +102,7 @@ if '${WITH_FLUID_ONLY}'== 'OFF':
...
@@ -102,7 +102,7 @@ if '${WITH_FLUID_ONLY}'== 'OFF':
package_data['py_paddle']=['*.py','_swig_paddle.so']
package_data['py_paddle']=['*.py','_swig_paddle.so']
package_dir={
package_dir={
'': '${
CMAKE_CURRENT_SOURCE_DIR}
',
'': '${
PADDLE_BINARY_DIR}/python
',
# The paddle.fluid.proto will be generated while compiling.
# The paddle.fluid.proto will be generated while compiling.
# So that package points to other directory.
# So that package points to other directory.
'paddle.fluid.proto.profiler': '${PADDLE_BINARY_DIR}/paddle/fluid/platform',
'paddle.fluid.proto.profiler': '${PADDLE_BINARY_DIR}/paddle/fluid/platform',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录