提交 569f7e83 编写于 作者: L liaogang

FIX: cppint code style

上级 620575b6
...@@ -117,8 +117,7 @@ public: ...@@ -117,8 +117,7 @@ public:
ConvFunctionBase::init(config); ConvFunctionBase::init(config);
} }
virtual void check(const BufferArgs& inputs, void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const BufferArgs& outputs) override {
const TensorShape& input = inputs[0].shape(); const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape(); const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape(); const TensorShape& output = outputs[0].shape();
...@@ -217,8 +216,7 @@ public: ...@@ -217,8 +216,7 @@ public:
ConvFunctionBase::init(config); ConvFunctionBase::init(config);
} }
virtual void check(const BufferArgs& inputs, void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const BufferArgs& outputs) override {
const TensorShape& output = inputs[0].shape(); const TensorShape& output = inputs[0].shape();
const TensorShape& filter = inputs[1].shape(); const TensorShape& filter = inputs[1].shape();
const TensorShape& input = outputs[0].shape(); const TensorShape& input = outputs[0].shape();
...@@ -311,8 +309,7 @@ public: ...@@ -311,8 +309,7 @@ public:
ConvFunctionBase::init(config); ConvFunctionBase::init(config);
} }
virtual void check(const BufferArgs& inputs, void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const BufferArgs& outputs) override {
const TensorShape& output = inputs[0].shape(); const TensorShape& output = inputs[0].shape();
const TensorShape& input = inputs[1].shape(); const TensorShape& input = inputs[1].shape();
const TensorShape& filter = outputs[0].shape(); const TensorShape& filter = outputs[0].shape();
......
...@@ -90,8 +90,7 @@ public: ...@@ -90,8 +90,7 @@ public:
ConvFunctionBase::init(config); ConvFunctionBase::init(config);
} }
virtual void check(const BufferArgs& inputs, void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const BufferArgs& outputs) override {
const TensorShape& input = inputs[0].shape(); const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape(); const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape(); const TensorShape& output = outputs[0].shape();
......
...@@ -403,7 +403,7 @@ public: ...@@ -403,7 +403,7 @@ public:
: layerName_(layerName) { : layerName_(layerName) {
addEvaluator(std::move(evaluator)); addEvaluator(std::move(evaluator));
} }
virtual void eval(const NeuralNetwork& nn) override { void eval(const NeuralNetwork& nn) override {
const LayerPtr& layer = nn.getLayer(layerName_); const LayerPtr& layer = nn.getLayer(layerName_);
CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel " CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel "
<< nn.getName(); << nn.getName();
......
...@@ -636,7 +636,7 @@ void lenToStarts(std::vector<int>& starts) { ...@@ -636,7 +636,7 @@ void lenToStarts(std::vector<int>& starts) {
} }
starts.back() = pos; starts.back() = pos;
} }
} } // namespace
void RecurrentGradientMachine::calcSequenceStartPositions() { void RecurrentGradientMachine::calcSequenceStartPositions() {
std::vector<int> starts(commonSeqInfo_.size() + 1); std::vector<int> starts(commonSeqInfo_.size() + 1);
......
...@@ -124,7 +124,7 @@ void copyElements(const IVector& srcVec, ...@@ -124,7 +124,7 @@ void copyElements(const IVector& srcVec,
dest[index[i]] = src[i]; dest[index[i]] = src[i];
} }
} }
} } // namespace
void GatherAgentLayer::forwardIds(PassType passType) { void GatherAgentLayer::forwardIds(PassType passType) {
IVectorPtr realId = realLayers_[0]->getOutputLabel(); IVectorPtr realId = realLayers_[0]->getOutputLabel();
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/framework/op_registry.h> #include <paddle/framework/op_registry.h>
#include <paddle/framework/tensor.h> #include <paddle/framework/tensor.h>
#include <paddle/operators/add_op.h> #include <paddle/operators/add_op.h>
...@@ -36,9 +50,9 @@ The equation is: Out = X + Y ...@@ -36,9 +50,9 @@ The equation is: Out = X + Y
)DOC"); )DOC");
} }
}; };
} // namespace op } // namespace operators
} // namespace paddle } // namespace paddle
REGISTER_OP(add_two, paddle::operators::AddOp, paddle::operators::AddOpMaker); REGISTER_OP(add_two, paddle::operators::AddOp, paddle::operators::AddOpMaker);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
add_two, ::paddle::operators::AddKernel<::paddle::platform::CPUPlace>); add_two, ::paddle::operators::AddKernel<::paddle::platform::CPUPlace>);
\ No newline at end of file
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "parameter_optimizer.h" #include "parameter_optimizer.h"
#include <cmath> #include <cmath>
#include <map> #include <map>
...@@ -5,21 +21,18 @@ ...@@ -5,21 +21,18 @@
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "lr_policy.h" #include "lr_policy.h"
using namespace paddle; paddle::optimizer::Tensor* FillTensor(size_t size) {
using namespace paddle::optimizer; paddle::optimizer::Tensor* param = new paddle::optimizer::Tensor(size);
paddle::optimizer::Tensor& p = *param;
Tensor* FillTensor(size_t size) {
Tensor* param = new Tensor(size);
Tensor& p = *param;
for (size_t i = 0; i < p.size(); ++i) { for (size_t i = 0; i < p.size(); ++i) {
p[i] = (float)rand() / (float)RAND_MAX; p[i] = (float)rand() / (float)RAND_MAX;
} }
return param; return param;
} }
Tensor* FixedTensor(size_t size) { paddle::optimizer::Tensor* FixedTensor(size_t size) {
Tensor* param = new Tensor(size); paddle::optimizer::Tensor* param = new paddle::optimizer::Tensor(size);
Tensor& p = *param; paddle::optimizer::Tensor& p = *param;
for (size_t i = 0; i < p.size(); ++i) { for (size_t i = 0; i < p.size(); ++i) {
p[i] = i; p[i] = i;
} }
...@@ -28,7 +41,8 @@ Tensor* FixedTensor(size_t size) { ...@@ -28,7 +41,8 @@ Tensor* FixedTensor(size_t size) {
class OptimizerTest : public testing::Test { class OptimizerTest : public testing::Test {
public: public:
// init tensor shape virtual ~OptimizerTest();
// init paddle::optimizer::Tensor shape
const size_t kSize = 5; const size_t kSize = 5;
virtual void SetUp() { virtual void SetUp() {
...@@ -38,34 +52,36 @@ public: ...@@ -38,34 +52,36 @@ public:
virtual void TearDown() {} virtual void TearDown() {}
void CreateSGD() { void CreateSGD() {
Tensor* parameter = FixedTensor(kSize); paddle::optimizer::Tensor* parameter = FixedTensor(kSize);
config_.set_optimizer(OptimizerConfig::SGD); config_.set_optimizer(paddle::OptimizerConfig::SGD);
config_.mutable_sgd()->set_momentum(0.0); config_.mutable_sgd()->set_momentum(0.0);
config_.mutable_sgd()->set_decay(0.0); config_.mutable_sgd()->set_decay(0.0);
config_.mutable_sgd()->set_nesterov(false); config_.mutable_sgd()->set_nesterov(false);
config_.set_lr_policy(OptimizerConfig::Const); config_.set_lr_policy(paddle::OptimizerConfig::Const);
config_.mutable_const_lr()->set_learning_rate(0.1); config_.mutable_const_lr()->set_learning_rate(0.1);
std::string str = config_.SerializeAsString(); std::string str = config_.SerializeAsString();
ParameterOptimizer* opt = ParameterOptimizer::Create(str, parameter); paddle::optimizer::ParameterOptimizer* opt =
paddle::optimizer::ParameterOptimizer::Create(str, parameter);
opts_.push_back(opt); opts_.push_back(opt);
} }
void CreateAdam() { void CreateAdam() {
Tensor* parameter = FixedTensor(kSize); paddle::optimizer::Tensor* parameter = FixedTensor(kSize);
config_.set_optimizer(OptimizerConfig::Adam); config_.set_optimizer(paddle::OptimizerConfig::Adam);
config_.mutable_adam()->set_beta_1(0.9); config_.mutable_adam()->set_beta_1(0.9);
config_.mutable_adam()->set_beta_2(0.1); config_.mutable_adam()->set_beta_2(0.1);
config_.mutable_adam()->set_epsilon(1e-3); config_.mutable_adam()->set_epsilon(1e-3);
config_.mutable_adam()->set_decay(0.0); config_.mutable_adam()->set_decay(0.0);
config_.set_lr_policy(OptimizerConfig::Const); config_.set_lr_policy(paddle::OptimizerConfig::Const);
config_.mutable_const_lr()->set_learning_rate(0.1); config_.mutable_const_lr()->set_learning_rate(0.1);
std::string str = config_.SerializeAsString(); std::string str = config_.SerializeAsString();
ParameterOptimizer* opt = ParameterOptimizer::Create(str, parameter); paddle::optimizer::ParameterOptimizer* opt =
paddle::optimizer::ParameterOptimizer::Create(str, parameter);
opts_.push_back(opt); opts_.push_back(opt);
} }
void TestGetWeight() { void TestGetWeight() {
Tensor* p = FixedTensor(kSize); paddle::optimizer::Tensor* p = FixedTensor(kSize);
for (size_t i = 0; i < opts_.size(); ++i) { for (size_t i = 0; i < opts_.size(); ++i) {
int s = 0; int s = 0;
float* newp = (float*)opts_[i]->get_weight(&s); float* newp = (float*)opts_[i]->get_weight(&s);
...@@ -76,7 +92,7 @@ public: ...@@ -76,7 +92,7 @@ public:
} }
void TestUpdate() { void TestUpdate() {
Tensor* g = FixedTensor(kSize); paddle::optimizer::Tensor* g = FixedTensor(kSize);
for (size_t i = 0; i < opts_.size(); ++i) { for (size_t i = 0; i < opts_.size(); ++i) {
opts_[i]->Update(g); opts_[i]->Update(g);
} }
...@@ -91,8 +107,8 @@ public: ...@@ -91,8 +107,8 @@ public:
} }
private: private:
std::vector<ParameterOptimizer*> opts_; std::vector<paddle::optimizer::ParameterOptimizer*> opts_;
OptimizerConfig config_; paddle::OptimizerConfig config_;
}; };
TEST_F(OptimizerTest, TestGetWeight) { TestGetWeight(); } TEST_F(OptimizerTest, TestGetWeight) { TestGetWeight(); }
......
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "serialization.h" #include "serialization.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
using namespace paddle;
using namespace paddle::optimizer;
TEST(TensorToProto, Case1) { TEST(TensorToProto, Case1) {
Tensor t(3), t1(3); paddle::optimizer::Tensor t(3), t1(3);
for (size_t i = 0; i < t.size(); ++i) { for (size_t i = 0; i < t.size(); ++i) {
t[i] = i; t[i] = i;
t1[i] = 0; t1[i] = 0;
} }
TensorProto proto; paddle::TensorProto proto;
TensorToProto(t, &proto); paddle::optimizer::TensorToProto(t, &proto);
ProtoToTensor(proto, &t1); paddle::optimizer::ProtoToTensor(proto, &t1);
for (size_t i = 0; i < t1.size(); ++i) { for (size_t i = 0; i < t1.size(); ++i) {
EXPECT_EQ(t1[i], t[i]); EXPECT_EQ(t1[i], t[i]);
} }
......
...@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,8 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifndef DYNAMIC_LOAD_H_ #pragma once
#define DYNAMIC_LOAD_H_
#include <dlfcn.h> #include <dlfcn.h>
#include <memory> #include <memory>
...@@ -59,5 +58,3 @@ void GetWarpCTCDsoHandle(void** dso_handle); ...@@ -59,5 +58,3 @@ void GetWarpCTCDsoHandle(void** dso_handle);
* *
*/ */
void GetLapackDsoHandle(void** dso_handle); void GetLapackDsoHandle(void** dso_handle);
#endif // DYNAMIC_LOAD_H_
...@@ -51,7 +51,7 @@ template <class T> ...@@ -51,7 +51,7 @@ template <class T>
class ThreadLocal { class ThreadLocal {
public: public:
ThreadLocal() { ThreadLocal() {
CHECK(pthread_key_create(&threadSpecificKey_, dataDestructor) == 0); CHECK_EQ(pthread_key_create(&threadSpecificKey_, dataDestructor), 0);
} }
~ThreadLocal() { pthread_key_delete(threadSpecificKey_); } ~ThreadLocal() { pthread_key_delete(threadSpecificKey_); }
...@@ -65,7 +65,7 @@ public: ...@@ -65,7 +65,7 @@ public:
if (!p && createLocal) { if (!p && createLocal) {
p = new T(); p = new T();
int ret = pthread_setspecific(threadSpecificKey_, p); int ret = pthread_setspecific(threadSpecificKey_, p);
CHECK(ret == 0); CHECK_EQ(ret, 0);
} }
return p; return p;
} }
...@@ -79,7 +79,7 @@ public: ...@@ -79,7 +79,7 @@ public:
if (T* q = get(false)) { if (T* q = get(false)) {
dataDestructor(q); dataDestructor(q);
} }
CHECK(pthread_setspecific(threadSpecificKey_, p) == 0); CHECK_EQ(pthread_setspecific(threadSpecificKey_, p), 0);
} }
/** /**
...@@ -112,7 +112,7 @@ private: ...@@ -112,7 +112,7 @@ private:
template <class T> template <class T>
class ThreadLocalD { class ThreadLocalD {
public: public:
ThreadLocalD() { CHECK(pthread_key_create(&threadSpecificKey_, NULL) == 0); } ThreadLocalD() { CHECK_EQ(pthread_key_create(&threadSpecificKey_, NULL), 0); }
~ThreadLocalD() { ~ThreadLocalD() {
pthread_key_delete(threadSpecificKey_); pthread_key_delete(threadSpecificKey_);
for (auto t : threadMap_) { for (auto t : threadMap_) {
...@@ -127,7 +127,7 @@ public: ...@@ -127,7 +127,7 @@ public:
T* p = (T*)pthread_getspecific(threadSpecificKey_); T* p = (T*)pthread_getspecific(threadSpecificKey_);
if (!p) { if (!p) {
p = new T(); p = new T();
CHECK(pthread_setspecific(threadSpecificKey_, p) == 0); CHECK_EQ(pthread_setspecific(threadSpecificKey_, p), 0);
updateMap(p); updateMap(p);
} }
return p; return p;
...@@ -141,7 +141,7 @@ public: ...@@ -141,7 +141,7 @@ public:
if (T* q = (T*)pthread_getspecific(threadSpecificKey_)) { if (T* q = (T*)pthread_getspecific(threadSpecificKey_)) {
dataDestructor(q); dataDestructor(q);
} }
CHECK(pthread_setspecific(threadSpecificKey_, p) == 0); CHECK_EQ(pthread_setspecific(threadSpecificKey_, p), 0);
updateMap(p); updateMap(p);
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册