未验证 提交 5595fdbb 编写于 作者: Y Yulong Ao 提交者: GitHub

[Auto Parallel] Add the high-level Engine API (#39709)

* [Auto Parallel] Add the high-level Engine API

* Update the test cmakefile
上级 c8d6c146
...@@ -45,9 +45,13 @@ class DistributedContext: ...@@ -45,9 +45,13 @@ class DistributedContext:
One auto-parallel run should use its own DistributedContext to avoid interfering other run. One auto-parallel run should use its own DistributedContext to avoid interfering other run.
""" """
def __init__(self, program=None): def __init__(self,
serial_main_prog=None,
serial_startup_prog=None,
dist_main_progs=None,
dist_startup_progs=None):
# Program related data members # Program related data members
self._serial_program = program self._serial_program = serial_main_prog
self._is_initialized_for_program = False self._is_initialized_for_program = False
self._dist_tensors_for_program = {} self._dist_tensors_for_program = {}
self._dist_ops_for_program = {} self._dist_ops_for_program = {}
...@@ -65,7 +69,11 @@ class DistributedContext: ...@@ -65,7 +69,11 @@ class DistributedContext:
self._tensor_id_to_tensor_node_ids = {} self._tensor_id_to_tensor_node_ids = {}
# Distributed programs # Distributed programs
self._dist_main_programs = dist_main_progs
if not self._dist_main_programs:
self._dist_main_programs = {} self._dist_main_programs = {}
self._dist_startup_programs = dist_startup_progs
if not self._dist_startup_programs:
self._dist_startup_programs = {} self._dist_startup_programs = {}
@property @property
...@@ -78,8 +86,8 @@ class DistributedContext: ...@@ -78,8 +86,8 @@ class DistributedContext:
@serial_program.setter @serial_program.setter
def serial_program(self, program): def serial_program(self, program):
assert self._serial_program is None, \ # assert self._serial_program is None, \
"This distributed context has already been realted to a serial program" # "This distributed context has already been realted to a serial program"
self._serial_program = program self._serial_program = program
@property @property
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import abc
import numpy as np
import paddle
from paddle.io import DataLoader, DistributedBatchSampler
class DistributedDataLoader(metaclass=abc.ABCMeta):
def __init__(self,
dataset,
batch_size=1,
epochs=1,
data_parallel_world_size=None,
data_parallel_rank=None,
drop_last=False):
self.dataset = dataset
self.batch_size = batch_size
self.epochs = epochs
self.data_parallel_world_size = data_parallel_world_size
self.data_parallel_rank = data_parallel_rank
self.drop_lost = drop_last
if data_parallel_world_size is not None:
assert batch_size % data_parallel_world_size == 0
@abc.abstractmethod
def __iter__(self):
raise NotImplementedError
@abc.abstractmethod
def __next__(self):
raise NotImplementedError
class NonIterableGeneratorLoader(DistributedDataLoader):
def __init__(self,
dataset,
feed_list,
places,
batch_size=1,
epochs=1,
steps_per_epoch=1000,
data_parallel_world_size=None,
data_parallel_rank=None,
drop_last=False):
self.feed_list = feed_list
self.places = places
self.steps_per_epoch = steps_per_epoch
super(NonIterableGeneratorLoader, self).__init__(
dataset, batch_size, epochs, data_parallel_world_size,
data_parallel_rank, drop_last)
self._inner_dataloader = self._create_inner_dataloader()
def __iter__(self):
self._cur_step = 0
self._inner_dataloader.start()
return self
def __next__(self):
if self._cur_step < self.steps_per_epoch:
self._cur_step += 1
else:
self._inner_dataloader.reset()
raise StopIteration
def _create_inner_dataloader(self):
def data_generator():
batch_data = None
for step, data in enumerate(self.dataset):
if batch_data is None:
batch_data = [[] for i in range(len(data))]
for idx, data_item in enumerate(data):
batch_data[idx].append(np.array(data_item))
if (step + 1) % self.batch_size == 0:
yield batch_data[0], batch_data[1]
batch_data = None
dataloader = paddle.fluid.io.DataLoader.from_generator(
feed_list=self.feed_list, capacity=70, iterable=False)
dataloader.set_batch_generator(data_generator, self.places)
return dataloader
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
from collections import defaultdict
import paddle
from paddle import fluid
from paddle.io import Dataset
from paddle.fluid.backward import append_backward
import paddle.fluid.core as core
from paddle.static import InputSpec
from paddle.fluid import program_guard
from paddle.fluid.framework import Operator
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.distributed.passes import new_pass, PassContext
from paddle.distributed.utils import get_logger
from .dist_loader import NonIterableGeneratorLoader
from .dist_op import DistributedOperator
from .dist_tensor import DistributedTensor
from .dist_context import DistributedContext
from .dist_context import get_default_distributed_context
from .dist_context import set_default_distributed_context
from .process_group import get_all_process_groups
from .process_group import get_process_group
from .process_group import get_world_process_group
from .process_group import _g_process_group_map, ProcessGroup
from .completion import Completer
from .partitioner import Partitioner
from .reshard import reshard, HAS_SENT, HAS_RECV, HAS_ALLGATHER
from .cluster import Cluster
from .mapper import mapping
from .planner import Planner
from .utils import make_data_unshard
from .utils import set_grad_var_shape
from .utils import print_program_with_dist_attr
from .utils import SerialProgramInfo
paddle.enable_static()
def to_list(value):
if value is None:
return value
if isinstance(value, (list, tuple)):
return list(value)
return [value]
class Engine:
def __init__(self, model=None, data_spec=None, cluster=None, strategy=None):
self.model = model
self.data_spec = data_spec
self.cluster = cluster
self.strategy = strategy
self._executor = None
self._orig_main_prog = fluid.default_main_program()
self._orig_startup_prog = fluid.default_startup_program()
self._serial_main_progs = {}
self._serial_startup_progs = {}
self._dist_main_progs = defaultdict(dict)
self._dist_startup_progs = defaultdict(dict)
self._orig_dist_context = get_default_distributed_context()
self._dist_contexts = {}
self._pass_contexts = {}
self._cur_rank = paddle.distributed.get_rank()
self._logger = get_logger(logging.INFO)
def prepare(self,
optimizer=None,
loss=None,
metrics=None,
mode="train",
all_ranks=False):
self.optimizer = optimizer
self.loss = loss
self.metrics = metrics
self.mode = mode
self._build()
self._plan()
if not all_ranks:
self._parallel(self._cur_rank)
else:
world_process_group = get_world_process_group()
all_ranks = world_process_group.ranks
for rank in all_ranks:
self._parallel(rank)
place = _get_device()
if isinstance(place, fluid.CUDAPlace):
self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
if self._executor is None:
self._executor = fluid.Executor(place)
def _build(self):
serial_main_prog = self._serial_main_progs.get(self.mode, None)
if serial_main_prog is not None:
return
serial_main_prog = self._orig_main_prog.clone()
serial_startup_prog = self._orig_startup_prog.clone()
with fluid.program_guard(serial_main_prog, serial_startup_prog):
inputs_spec = self.data_spec[0]
labels_spec = self.data_spec[1]
inputs = [s._create_feed_layer() for s in to_list(inputs_spec)]
labels = [s._create_feed_layer() for s in to_list(labels_spec)]
self._input_vars = inputs
self._label_vars = labels
feed_list = self._input_vars + self._label_vars
outputs = to_list(self.model(*inputs))
if self.mode != "predict" and self.loss:
loss = self.loss(*(outputs + labels))
self._loss_var = loss
self._serial_main_progs[self.mode] = serial_main_prog
self._serial_startup_progs[self.mode] = serial_startup_prog
self._dist_contexts[self.mode] = DistributedContext(
serial_main_prog, serial_startup_prog,
self._dist_main_progs[self.mode],
self._dist_startup_progs[self.mode])
self._pass_contexts[self.mode] = PassContext()
def _plan(self):
# Complete the distributed annotation
serial_main_prog = self._serial_main_progs[self.mode]
self._completer = Completer(self._dist_contexts[self.mode])
self._completer.complete_forward_annotation(serial_main_prog)
# TODO: add auto planner process
def _parallel(self, rank):
serial_main_program = self._serial_main_progs[self.mode]
serial_startup_program = self._serial_startup_progs[self.mode]
dist_context = self._dist_contexts[self.mode]
if self.mode != "predict" and self.loss:
# Generate backward
serial_loss = self._loss_var
params_grads = self._generate_backward(
serial_main_program, serial_startup_program, serial_loss)
# Apply pre optimization passes
self._apply_pre_optimization(serial_main_program,
serial_startup_program, serial_loss,
params_grads)
# Do logical partition
partitioner = Partitioner(dist_context, rank)
dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
serial_main_program, serial_startup_program, params_grads)
# Generate optimizer
self._generate_optimizer(dist_main_prog, dist_startup_prog,
dist_params_grads)
# Do reshard process
set_grad_var_shape(dist_main_prog, dist_context)
make_data_unshard(dist_main_prog, dist_startup_prog, dist_context)
reshard(dist_main_prog, dist_startup_prog, rank, dist_context,
dist_params_grads)
# Apply post optimization passes
self._apply_post_optimization(dist_main_prog, dist_startup_prog,
rank, dist_params_grads)
self._dist_main_progs[self.mode][rank] = dist_main_prog
self._dist_startup_progs[self.mode][rank] = dist_startup_prog
def _generate_backward(self, main_program, startup_program, loss):
with program_guard(main_program, startup_program):
params_grads = append_backward(
loss,
distop_context=self._dist_contexts[self.mode].dist_op_context)
self._completer.complete_backward_annotation(main_program)
return params_grads
def _generate_optimizer(self, main_program, startup_program, params_grads):
with program_guard(main_program, startup_program):
optimizer_ops = copy.deepcopy(self.optimizer).apply_gradients(
params_grads)
self._completer.complete_update_annotation(main_program)
return optimizer_ops
def _apply_pre_optimization(self, main_program, startup_program, loss,
params_grads):
# apply amp pass
if self.strategy.amp:
config = copy.deepcopy(self.strategy.amp_configs)
config["dist_context"] = self._dist_contexts[self.mode]
config["params_grads"] = params_grads
config["loss"] = loss
auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
auto_parallel_amp_pass.apply([main_program], [startup_program],
self._pass_contexts[self.mode])
# apply recompute pass
if self.strategy.recompute:
config = copy.deepcopy(self.strategy.recompute_configs)
config["dist_context"] = self._dist_contexts[self.mode]
config["no_grad_set"] = None
config["loss"] = loss
auto_parallel_recompute_pass = new_pass("auto_parallel_recompute",
config)
auto_parallel_recompute_pass.apply([main_program],
[startup_program],
self._pass_contexts[self.mode])
def _apply_post_optimization(self, main_program, startup_program, rank,
params_grads):
if self.strategy.sharding:
config = copy.deepcopy(self.strategy.sharding_configs)
config["dist_context"] = self._dist_contexts[self.mode]
config["params_grads"] = params_grads
config["global_rank"] = rank
auto_parallel_sharding_pass = new_pass("auto_parallel_sharding",
config)
auto_parallel_sharding_pass.apply([main_program],
[startup_program],
self._pass_contexts[self.mode])
if self.strategy.gradient_merge:
config = copy.deepcopy(self.strategy.gradient_merge_configs)
config["dist_context"] = self._dist_contexts[self.mode]
config["params_grads"] = params_grads
auto_parallel_gradient_merge_pass = new_pass(
"auto_parallel_gradient_merge_pass", config)
auto_parallel_gradient_merge_pass.apply(
[main_program], [startup_program],
self._pass_contexts[self.mode])
def fit(self, train_data, batch_size=1, epochs=1, steps_per_epoch=1000):
assert isinstance(train_data, Dataset)
assert steps_per_epoch is not None
train_dataloader = self._create_dataloader(train_data, batch_size,
epochs, steps_per_epoch)
self._init_communication()
dist_startup_prog = self._dist_startup_progs["train"][self._cur_rank]
self._executor.run(dist_startup_prog)
for epoch in range(epochs):
# train_dataloader.start()
# for step in range(steps_per_epoch):
# logs = self.train_step(None)
# self._logger.info(logs)
# train_dataloader.reset()
for step, data in enumerate(train_dataloader):
logs = self._train_step(data)
train_logs = {
"train_" + name: val
for name, val in logs.items()
}
self._logger.info(logs)
def _train_step(self, data):
logs = {}
dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
if self._loss_var.name not in dist_main_prog.global_block().vars:
loss = self._executor.run(dist_main_prog)
logs["loss"] = None
else:
fetch_list = self._loss_var
loss = self._executor.run(dist_main_prog, fetch_list=fetch_list)
logs["loss"] = loss
return logs
def _create_dataloader(self, dataset, batch_size, epochs, steps_per_epoch):
feed_list = self._input_vars + self._label_vars
dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
dist_context = self._dist_contexts[self.mode]
dist_main_block = dist_main_prog.global_block()
op_size = len(dist_main_block.ops)
places = paddle.static.cuda_places()
with fluid.program_guard(dist_main_prog, dist_startup_prog):
dataloader = NonIterableGeneratorLoader(
dataset, feed_list, places, batch_size, epochs, steps_per_epoch)
new_op_size = len(dist_main_block.ops)
for idx in range(new_op_size - 1, op_size - 1, -1):
op = dist_main_block.ops[new_op_size - 1]
new_op_desc = dist_main_block.desc._prepend_op()
new_op_desc.copy_from(op.desc)
new_op = Operator(
dist_main_block, new_op_desc, type=new_op_desc.type())
dist_main_block.ops.insert(0, new_op)
dist_op = DistributedOperator(new_op)
dist_context.add_dist_op_for_program(dist_op)
for _ in range(new_op_size - op_size):
dist_main_block._remove_op(new_op_size, sync=False)
dist_main_block._sync_with_cpp()
return dataloader
def _init_communication(self):
# Traverse different rank programs and traverse each op of them,
# instantiate communication by process_mapping.
all_process_groups = get_all_process_groups()
for process_group in all_process_groups:
if self._cur_rank not in process_group.ranks:
continue
process_group.instantiate()
# def save(self, path, training=True):
# pass
# def load(self, path, strict=True, load_optimizer=True):
# pass
...@@ -7,4 +7,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU) ...@@ -7,4 +7,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
set_tests_properties(test_relaunch_with_planner PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 120) set_tests_properties(test_relaunch_with_planner PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 120)
py_test_modules(test_relaunch_with_gpt_planner MODULES test_relaunch_with_planner ENVS ${dist_ENVS}) py_test_modules(test_relaunch_with_gpt_planner MODULES test_relaunch_with_planner ENVS ${dist_ENVS})
set_tests_properties(test_relaunch_with_gpt_planner PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 240) set_tests_properties(test_relaunch_with_gpt_planner PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" TIMEOUT 240)
py_test_modules(test_engine_api MODULES test_engine_api ENVS ${dist_ENVS})
endif() endif()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import time
import paddle.fluid as fluid
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine
paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10
paddle.seed(44)
class MyDataset(Dataset):
def __init__(self, num_samples):
super(MyDataset, self).__init__()
self.num_samples = num_samples
def __getitem__(self, index):
input = np.random.uniform(size=image_size).astype("float32")
label = np.random.randint(0, class_num - 1, dtype="int64")
return input, label
def __len__(self):
return self.num_samples
class MLPLayer(nn.Layer):
def __init__(self,
hidden_size=1024,
intermediate_size=4 * 1024,
dropout_ratio=0.1,
initializer_range=0.02):
super(MLPLayer, self).__init__()
d_model = hidden_size
dim_feedforward = intermediate_size
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
mean=0.0, std=initializer_range))
bias_attr = None
self.linear0 = nn.Linear(
d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
self.linear1 = nn.Linear(
dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
# self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
# self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
def forward(self, input):
auto.shard_tensor(
input,
dist_attr={
"process_mesh": global_process_mesh,
"dims_mappig": [-1]
})
# out = self.norm(input)
out = self.linear0(input)
out = F.gelu(out, approximate=True)
out = self.linear1(out)
# out = self.dropout(out)
out = self.linear2(out)
return out
class TestEngineAPI(unittest.TestCase):
def test_engine_api(self):
mlp = MLPLayer(
hidden_size=hidden_size,
intermediate_size=4 * hidden_size,
dropout_ratio=0.1,
initializer_range=0.02)
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.fluid.optimizer.AdamOptimizer(
learning_rate=0.00001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
grad_clip=None)
dataset = MyDataset(batch_num * batch_size)
data_spec = [
InputSpec([batch_size, hidden_size], 'float32', 'x'),
InputSpec([batch_size], 'int64', 'label')
]
dist_strategy = fleet.DistributedStrategy()
dist_strategy.amp = False
dist_strategy.pipeline = False
dist_strategy.recompute = False
# init parallel optimizer
dist_strategy.semi_auto = True
fleet.init(is_collective=True, strategy=dist_strategy)
engine = Engine(mlp, data_spec, strategy=dist_strategy)
engine.prepare(optimizer, loss)
engine.fit(dataset,
batch_size=batch_size,
steps_per_epoch=batch_num * batch_size)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册