Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5558784c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5558784c
编写于
9月 10, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into reset_vars_on_pserver
上级
32b94a7d
5023530a
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
337 addition
and
275 deletion
+337
-275
paddle/fluid/framework/ir/fc_fuse_pass.cc
paddle/fluid/framework/ir/fc_fuse_pass.cc
+11
-22
paddle/fluid/framework/ir/fc_gru_fuse_pass.cc
paddle/fluid/framework/ir/fc_gru_fuse_pass.cc
+44
-62
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
+61
-91
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+62
-61
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+130
-4
paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc
paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc
+6
-0
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+8
-8
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+15
-27
未找到文件。
paddle/fluid/framework/ir/fc_fuse_pass.cc
浏览文件 @
5558784c
...
...
@@ -29,39 +29,27 @@ std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
std
::
unordered_set
<
Node
*>
nodes2delete
;
GraphPatternDetector
gpd
;
// BuildFCPattern(gpd.mutable_pattern());
auto
*
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"fc_fuse/x"
)
->
AsInput
()
->
assert_is_op_input
(
"mul"
,
"X"
);
patterns
::
FC
(
gpd
.
mutable_pattern
(),
"fc_fuse"
,
x
,
true
/*with bias*/
);
#define GET_NODE(id) \
PADDLE_ENFORCE(subgraph.count(gpd.pattern().RetrieveNode("fc_fuse/" #id)), \
"pattern has no Node called %s", #id); \
auto* id = subgraph.at(gpd.pattern().RetrieveNode("fc_fuse/" #id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", "fc_fuse/" #id);
patterns
::
FC
fc_pattern
(
gpd
.
mutable_pattern
(),
"fc_fuse"
);
fc_pattern
(
x
,
true
/*with bias*/
);
int
found_fc_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle FC fuse"
;
// Currently, there is no FC op available, so I will just simulate the
// scenerio.
// FC's fusion is simple, just op fuse, no need to process the
// parameters.
GET_NODE
(
x
);
// x
GET_NODE
(
w
);
// Y
GET_NODE
(
fc_bias
);
// bias
GET_NODE
(
fc_out
);
// Out
GET_NODE
(
mul
);
// MUL op
GET_NODE
(
elementwise_add
);
// ELEMENT_ADD op
GET_NODE
(
mul_out
);
// tmp
#undef GET_NODE
GET_IR_NODE_FROM_SUBGRAPH
(
w
,
w
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_bias
,
bias
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_out
,
Out
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
mul
,
mul
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add
,
elementwise_add
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
mul_out
,
mul_out
,
fc_pattern
);
// Create an FC Node.
OpDesc
desc
;
std
::
string
fc_x_in
=
x
->
Name
();
std
::
string
fc_x_in
=
subgraph
.
at
(
x
)
->
Name
();
std
::
string
fc_Y_in
=
w
->
Name
();
std
::
string
fc_bias_in
=
fc_bias
->
Name
();
std
::
string
fc_out_out
=
fc_out
->
Name
();
...
...
@@ -73,7 +61,8 @@ std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
auto
fc_node
=
g
->
CreateOpNode
(
&
desc
);
// OpDesc will be copied.
GraphSafeRemoveNodes
(
graph
.
get
(),
{
mul
,
elementwise_add
,
mul_out
});
IR_NODE_LINK_TO
(
x
,
fc_node
);
PADDLE_ENFORCE
(
subgraph
.
count
(
x
));
IR_NODE_LINK_TO
(
subgraph
.
at
(
x
),
fc_node
);
IR_NODE_LINK_TO
(
w
,
fc_node
);
IR_NODE_LINK_TO
(
fc_bias
,
fc_node
);
IR_NODE_LINK_TO
(
fc_node
,
fc_out
);
...
...
paddle/fluid/framework/ir/fc_gru_fuse_pass.cc
浏览文件 @
5558784c
...
...
@@ -20,52 +20,43 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
static
void
BuildPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
bool
with_fc_bias
)
{
PDNode
*
x
=
pattern
->
NewNode
(
name_scope
,
"x"
)
->
assert_is_op_input
(
"mul"
)
->
assert_var_not_persistable
();
auto
*
fc_out
=
patterns
::
FC
(
pattern
,
name_scope
,
x
,
with_fc_bias
);
fc_out
->
AsIntermediate
();
// fc_out is a tmp var, will be removed after fuse.
patterns
::
GRU
(
pattern
,
name_scope
,
fc_out
);
VLOG
(
3
)
<<
"fc_gru pattern
\n
"
<<
pattern
->
DotString
();
}
static
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
Scope
*
scope
,
bool
with_fc_bias
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildPattern
(
pattern
,
name_scope
,
with_fc_bias
);
// Create pattern.
patterns
::
FC
fc_pattern
(
pattern
,
name_scope
);
patterns
::
GRU
gru_pattern
(
pattern
,
name_scope
);
PDNode
*
x
=
pattern
->
NewNode
(
patterns
::
UniqueKey
(
"x"
))
->
assert_var_not_persistable
();
auto
*
fc_out
=
fc_pattern
(
x
,
with_fc_bias
);
fc_out
->
AsIntermediate
();
// fc_out is a tmp var, will be removed after fuse.
gru_pattern
(
fc_out
);
// Create New OpDesc
auto
gru_creater
=
[
&
](
int
gru
,
int
x
,
int
weight_x
,
int
weight_h
,
int
bias
,
int
hidden
,
int
fc_bias
)
{
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
GET_NODE
(
x
);
GET_NODE
(
weight_x
);
GET_NODE
(
weight_h
);
GET_NODE
(
bias
);
GET_NODE
(
hidden
);
GET_NODE
(
gru
);
auto
gru_creater
=
[
&
](
Node
*
gru
,
Node
*
x
,
Node
*
weight_x
,
Node
*
weight_h
,
Node
*
bias
,
Node
*
hidden
,
Node
*
fc_bias
)
{
OpDesc
op_desc
;
op_desc
.
SetType
(
"fusion_gru"
);
#define NEW_NAME(x) name_scope + "/at." #x ".new"
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__
##_n
->Name()});
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN
(
X
,
x
);
SET_IN
(
WeightX
,
weight_x
);
SET_IN
(
WeightH
,
weight_h
);
if
(
with_fc_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{
NEW_NAME
(
bias
)
+
bias
_n
->
Name
()});
op_desc
.
SetInput
(
"Bias"
,
{
NEW_NAME
(
bias
)
+
bias
->
Name
()});
}
else
{
SET_IN
(
Bias
,
bias
);
}
#undef SET_IN
op_desc
.
SetInput
(
"H0"
,
{});
op_desc
.
SetOutput
(
"Hidden"
,
{
hidden
_n
->
Name
()});
op_desc
.
SetAttr
(
"is_reverse"
,
gru
_n
->
Op
()
->
GetAttr
(
"is_reverse"
));
op_desc
.
SetOutput
(
"Hidden"
,
{
hidden
->
Name
()});
op_desc
.
SetAttr
(
"is_reverse"
,
gru
->
Op
()
->
GetAttr
(
"is_reverse"
));
// TODO(TJ): This should be a option for infer
op_desc
.
SetAttr
(
"use_seq"
,
true
);
...
...
@@ -82,14 +73,12 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
PADDLE_ENFORCE
(
scope
);
if
(
with_fc_bias
)
{
// Fusion GRU bias = fcbias + grubias
auto
*
fusion_bias_var
=
scope
->
Var
(
NEW_NAME
(
bias
)
+
bias
_n
->
Name
());
auto
*
fusion_bias_var
=
scope
->
Var
(
NEW_NAME
(
bias
)
+
bias
->
Name
());
auto
*
out_bias_tensor
=
fusion_bias_var
->
GetMutable
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE
(
fusion_bias_var
);
GET_NODE
(
fc_bias
);
PADDLE_ENFORCE
(
fc_bias_n
);
auto
*
gru_bias_var
=
scope
->
FindVar
(
bias_n
->
Name
());
auto
*
fc_bias_var
=
scope
->
FindVar
(
fc_bias_n
->
Name
());
auto
*
gru_bias_var
=
scope
->
FindVar
(
bias
->
Name
());
auto
*
fc_bias_var
=
scope
->
FindVar
(
fc_bias
->
Name
());
PADDLE_ENFORCE
(
gru_bias_var
);
PADDLE_ENFORCE
(
fc_bias_var
);
const
auto
&
gru_bias_tenosr
=
gru_bias_var
->
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -113,11 +102,11 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
#undef NEW_NAME
#undef NEW_IMTERMEDIATE_OUT
IR_NODE_LINK_TO
(
x
_n
,
op
);
IR_NODE_LINK_TO
(
weight_x
_n
,
op
);
IR_NODE_LINK_TO
(
weight_h
_n
,
op
);
IR_NODE_LINK_TO
(
bias
_n
,
op
);
// actually should link to new bias if have
IR_NODE_LINK_TO
(
op
,
hidden
_n
);
IR_NODE_LINK_TO
(
x
,
op
);
IR_NODE_LINK_TO
(
weight_x
,
op
);
IR_NODE_LINK_TO
(
weight_h
,
op
);
IR_NODE_LINK_TO
(
bias
,
op
);
// actually should link to new bias if have
IR_NODE_LINK_TO
(
op
,
hidden
);
// h0?
return
op
;
};
...
...
@@ -125,42 +114,35 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
int
fusion_count
{
0
};
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
#define GET_NODE(name__) \
std::string name__##key = name_scope + "/" + #name__; \
auto* name__##n = pattern->RetrieveNode(name__##key); \
PADDLE_ENFORCE(name__##n); \
PADDLE_ENFORCE(subgraph.count(name__##n)); \
Node* name__##_n = subgraph.at(name__##n); \
int name__ __attribute__((unused)) = name__##_n->id();
GET_NODE
(
x
);
GET_NODE
(
w
);
// fc weight
GET_NODE
(
mul
);
GET_NODE
(
fc_out
);
GET_NODE
(
Weight
);
GET_NODE
(
gru
);
GET_NODE
(
Bias
);
GET_NODE
(
Hidden
);
auto
*
x_n
=
subgraph
.
at
(
x
);
GET_IR_NODE_FROM_SUBGRAPH
(
w
,
w
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
mul
,
mul
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_out
,
Out
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Weight
,
Weight
,
gru_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
gru
,
gru
,
gru_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Bias
,
Bias
,
gru_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Hidden
,
Hidden
,
gru_pattern
);
// nodes need be removed
GET_
NODE
(
BatchGate
);
GET_
NODE
(
BatchResetHiddenPrev
);
GET_
NODE
(
BatchHidde
n
);
GET_
IR_NODE_FROM_SUBGRAPH
(
BatchGate
,
BatchGate
,
gru_pattern
);
GET_
IR_NODE_FROM_SUBGRAPH
(
BatchResetHiddenPrev
,
BatchGate
,
gru_pattern
);
GET_
IR_NODE_FROM_SUBGRAPH
(
BatchHidden
,
BatchGate
,
gru_patter
n
);
if
(
with_fc_bias
)
{
GET_NODE
(
mul_out
);
GET_NODE
(
fc_bias
);
GET_NODE
(
elementwise_add
);
gru_creater
(
gru
,
x
,
w
,
Weight
,
Bias
,
Hidden
,
fc_bias
);
GET_IR_NODE_FROM_SUBGRAPH
(
mul_out
,
mul_out
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_bias
,
bias
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add
,
elementwise_add
,
fc_pattern
);
gru_creater
(
gru
,
x_n
,
w
,
Weight
,
Bias
,
Hidden
,
fc_bias
);
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
(
{
mul
_n
,
gru_n
,
elementwise_add_n
,
fc_bias_n
,
fc_out_n
,
mul_out_n
,
Batch
Gate_n
,
BatchResetHiddenPrev_n
,
BatchHidden_
n
});
{
mul
,
gru
,
elementwise_add
,
fc_bias
,
fc_out
,
mul_out
,
BatchGate
,
Batch
ResetHiddenPrev
,
BatchHidde
n
});
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
}
else
{
gru_creater
(
gru
,
x
,
w
,
Weight
,
Bias
,
Hidden
,
-
1
);
gru_creater
(
gru
,
x
_n
,
w
,
Weight
,
Bias
,
Hidden
,
nullptr
);
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
(
{
mul
_n
,
gru_n
,
BatchGate_n
,
BatchResetHiddenPrev_n
,
BatchHidden_
n
});
{
mul
,
gru
,
BatchGate
,
BatchResetHiddenPrev
,
BatchHidde
n
});
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
}
#undef GET_NODE
...
...
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
浏览文件 @
5558784c
...
...
@@ -20,45 +20,29 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
static
std
::
string
GenNodeName
(
const
std
::
string
&
prefix
,
const
std
::
string
&
name
)
{
return
prefix
+
"/"
+
name
;
}
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
Scope
*
scope
,
bool
with_fc_bias
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
static
void
BuildPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
bool
with_fc_bias
)
{
PDNode
*
x
=
pattern
->
NewNode
(
name_scope
,
"x"
)
// Build pattern
PDNode
*
x
=
pattern
->
NewNode
(
patterns
::
PDNodeName
(
name_scope
,
"x"
))
->
assert_is_op_input
(
"mul"
)
->
assert_var_not_persistable
();
auto
*
fc_out
=
patterns
::
FC
(
pattern
,
name_scope
,
x
,
with_fc_bias
);
fc_out
->
AsIntermediate
();
// fc_out is a tmp var, will be removed after fuse.
patterns
::
LSTM
(
pattern
,
name_scope
,
fc_out
);
// LOG(INFO) << "\n" << pattern->DotString();
}
static
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
Scope
*
scope
,
bool
with_fc_bias
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
patterns
::
FC
fc_pattern
(
pattern
,
name_scope
);
BuildPattern
(
pattern
,
name_scope
,
with_fc_bias
);
// fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
auto
*
fc_out
=
fc_pattern
(
x
,
with_fc_bias
)
->
AsIntermediate
();
patterns
::
LSTM
lstm_pattern
(
pattern
,
name_scope
);
lstm_pattern
(
fc_out
);
// Create New OpDesc
auto
lstm_creator
=
[
&
](
int
lstm
,
int
input
,
int
weight_x
,
int
weight_h
,
int
bias
,
int
hidden
,
int
cell
,
int
xx
,
int
fc_bias
)
{
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
GET_NODE
(
input
);
GET_NODE
(
weight_x
);
GET_NODE
(
weight_h
);
GET_NODE
(
bias
);
GET_NODE
(
hidden
);
GET_NODE
(
cell
);
GET_NODE
(
xx
);
GET_NODE
(
lstm
);
auto
lstm_creator
=
[
&
](
Node
*
lstm
,
Node
*
input
,
Node
*
weight_x
,
Node
*
weight_h
,
Node
*
bias
,
Node
*
hidden
,
Node
*
cell
,
Node
*
xx
,
Node
*
fc_bias
)
{
OpDesc
op_desc
;
op_desc
.
SetType
(
"fusion_lstm"
);
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__
##_n
->Name()});
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN
(
X
,
input
);
SET_IN
(
WeightX
,
weight_x
);
SET_IN
(
WeightH
,
weight_h
);
...
...
@@ -71,13 +55,12 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
auto
*
bias_var
=
scope
->
Var
(
new_bias_var
);
PADDLE_ENFORCE
(
bias_var
);
auto
*
bias_tensor
=
bias_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
lstm_bias_var
=
scope
->
FindVar
(
bias
_n
->
Name
());
auto
*
lstm_bias_var
=
scope
->
FindVar
(
bias
->
Name
());
PADDLE_ENFORCE
(
lstm_bias_var
);
const
auto
&
lstm_bias_tensor
=
lstm_bias_var
->
Get
<
framework
::
LoDTensor
>
();
bias_tensor
->
Resize
(
lstm_bias_tensor
.
dims
());
GET_NODE
(
fc_bias
);
auto
*
fc_bias_var
=
scope
->
FindVar
(
fc_bias_n
->
Name
());
auto
*
fc_bias_var
=
scope
->
FindVar
(
fc_bias
->
Name
());
const
auto
&
fc_bias_tensor
=
fc_bias_var
->
Get
<
framework
::
LoDTensor
>
();
auto
*
data
=
bias_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
...
...
@@ -88,31 +71,36 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
}
op_desc
.
SetInput
(
"Bias"
,
{
new_bias_var
});
}
#undef GET_NODE
// Create temp variables.
scope
->
Var
(
name_scope
+
"/BatchedInput.new"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
->
Var
(
name_scope
+
"/BatchCellPreAct.new"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
->
Var
(
name_scope
+
"/BatchedGate.new"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
const
std
::
string
BatchedInput
=
patterns
::
UniqueKey
(
"BatchedInput"
);
const
std
::
string
BatchedCellPreAct
=
patterns
::
UniqueKey
(
"BatchedCellPreAct"
);
const
std
::
string
BatchedGate
=
patterns
::
UniqueKey
(
"BatchedGate"
);
scope
->
Var
(
BatchedInput
)
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
->
Var
(
BatchedCellPreAct
)
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
->
Var
(
BatchedGate
)
->
GetMutable
<
framework
::
LoDTensor
>
();
op_desc
.
SetInput
(
"H0"
,
{});
op_desc
.
SetInput
(
"C0"
,
{});
op_desc
.
SetOutput
(
"Hidden"
,
{
hidden
_n
->
Name
()});
op_desc
.
SetOutput
(
"Cell"
,
{
cell
_n
->
Name
()});
op_desc
.
SetOutput
(
"XX"
,
{
xx
_n
->
Name
()});
op_desc
.
SetOutput
(
"BatchedGate"
,
{
name_scope
+
"/BatchedGate.new"
});
op_desc
.
SetOutput
(
"BatchCellPreAct"
,
{
name_scope
+
"/BatchCellPreAct.new"
});
op_desc
.
SetOutput
(
"BatchedInput"
,
{
name_scope
+
"/BatchedInput.new"
});
op_desc
.
SetAttr
(
"is_reverse"
,
lstm
_n
->
Op
()
->
GetAttr
(
"is_reverse"
));
op_desc
.
SetAttr
(
"use_peepholes"
,
lstm
_n
->
Op
()
->
GetAttr
(
"use_peepholes"
));
op_desc
.
SetOutput
(
"Hidden"
,
{
hidden
->
Name
()});
op_desc
.
SetOutput
(
"Cell"
,
{
cell
->
Name
()});
op_desc
.
SetOutput
(
"XX"
,
{
xx
->
Name
()});
op_desc
.
SetOutput
(
"BatchedGate"
,
{
BatchedGate
});
op_desc
.
SetOutput
(
"BatchCellPreAct"
,
{
BatchedCellPreAct
});
op_desc
.
SetOutput
(
"BatchedInput"
,
{
BatchedInput
});
op_desc
.
SetAttr
(
"is_reverse"
,
lstm
->
Op
()
->
GetAttr
(
"is_reverse"
));
op_desc
.
SetAttr
(
"use_peepholes"
,
lstm
->
Op
()
->
GetAttr
(
"use_peepholes"
));
// TODO(TJ): get from attr
op_desc
.
SetAttr
(
"use_seq"
,
true
);
#define TMP_NAME(x) "at.new.tmp." #x
#define OP_SET_OUT(x) op_desc.SetOutput(#x, {TMP_NAME(x)})
PADDLE_ENFORCE
(
graph
->
Has
(
kParamScopeAttr
));
auto
*
scope
=
graph
->
Get
<
Scope
*>
(
kParamScopeAttr
);
#define OP_SET_OUT(x) \
const std::string x = patterns::UniqueKey(#x); \
op_desc.SetOutput(#x, {x}); \
scope->Var(x)->GetMutable<LoDTensor>()
OP_SET_OUT
(
BatchedCell
);
OP_SET_OUT
(
BatchedHidden
);
OP_SET_OUT
(
ReorderedH0
);
...
...
@@ -120,22 +108,11 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
#undef OP_SET_OUT
auto
*
op
=
graph
->
CreateOpNode
(
&
op_desc
);
PADDLE_ENFORCE
(
graph
->
Has
(
kParamScopeAttr
));
auto
*
scope
=
graph
->
Get
<
Scope
*>
(
kParamScopeAttr
);
#define TMP_NEW(x) scope->Var(TMP_NAME(x))->GetMutable<LoDTensor>()
TMP_NEW
(
BatchedCell
);
TMP_NEW
(
BatchedHidden
);
TMP_NEW
(
ReorderedH0
);
TMP_NEW
(
ReorderedC0
);
#undef TMP_NEW
#undef TMP_NAME
IR_NODE_LINK_TO
(
input_n
,
op
);
IR_NODE_LINK_TO
(
weight_x_n
,
op
);
IR_NODE_LINK_TO
(
weight_h_n
,
op
);
IR_NODE_LINK_TO
(
bias_n
,
op
);
IR_NODE_LINK_TO
(
op
,
hidden_n
);
IR_NODE_LINK_TO
(
input
,
op
);
IR_NODE_LINK_TO
(
weight_x
,
op
);
IR_NODE_LINK_TO
(
weight_h
,
op
);
IR_NODE_LINK_TO
(
bias
,
op
);
IR_NODE_LINK_TO
(
op
,
hidden
);
return
op
;
};
...
...
@@ -143,39 +120,32 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
#define GET_NODE(name__) \
std::string name__##key = name_scope + "/" + #name__; \
auto* name__##n = pattern->RetrieveNode(name__##key); \
PADDLE_ENFORCE(name__##n); \
PADDLE_ENFORCE(subgraph.count(name__##n)); \
Node* name__##_n = subgraph.at(name__##n); \
int name__ __attribute__((unused)) = name__##_n->id();
GET_NODE
(
x
);
GET_NODE
(
w
);
GET_NODE
(
mul
);
GET_NODE
(
fc_out
);
GET_NODE
(
Weight
);
GET_NODE
(
lstm
);
GET_NODE
(
Bias
);
GET_NODE
(
Hidden
);
GET_NODE
(
Cell
);
GET_IR_NODE_FROM_SUBGRAPH
(
lstm
,
lstm
,
lstm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Weight
,
Weight
,
lstm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Bias
,
Bias
,
lstm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Cell
,
Cell
,
lstm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
Hidden
,
Hidden
,
lstm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
w
,
w
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
mul
,
mul
,
fc_pattern
);
if
(
with_fc_bias
)
{
GET_NODE
(
fc_bias
);
GET_NODE
(
elementwise_add
);
lstm_creator
(
lstm
,
x
,
w
,
Weight
,
Bias
,
Hidden
,
Cell
,
fc_out
,
fc_bias
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_out
,
Out
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_bias
,
bias
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add
,
elementwise_add
,
fc_pattern
);
lstm_creator
(
lstm
,
subgraph
.
at
(
x
),
w
,
Weight
,
Bias
,
Hidden
,
Cell
,
fc_out
,
fc_bias
);
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
(
{
mul
_n
,
lstm_n
,
elementwise_add_n
});
{
mul
,
lstm
,
elementwise_add
});
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
}
else
{
lstm_creator
(
lstm
,
x
,
w
,
Weight
,
Bias
,
Hidden
,
Cell
,
fc_out
,
-
1
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_out
,
mul_out
,
fc_pattern
);
lstm_creator
(
lstm
,
subgraph
.
at
(
x
),
w
,
Weight
,
Bias
,
Hidden
,
Cell
,
fc_out
,
nullptr
);
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
({
mul
_n
,
lstm_n
});
std
::
unordered_set
<
const
Node
*>
marked_nodes
({
mul
,
lstm
});
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
}
#undef GET_NODE
++
fusion_count
;
};
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
5558784c
...
...
@@ -21,6 +21,7 @@
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/printf.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -106,8 +107,7 @@ bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph& graph) {
for
(
auto
&
pdnode
:
pattern_
.
nodes
())
{
if
(
!
pdnodes2nodes_
.
count
(
pdnode
.
get
()))
{
VLOG
(
4
)
<<
pdnode
->
name
()
<<
" can't find matched Node, early stop"
;
return
false
;
// return false;
}
}
for
(
auto
&
item
:
pdnodes2nodes_
)
{
...
...
@@ -517,87 +517,89 @@ bool VarLinksFromOp(Node* node, const std::string& op_type) {
return
false
;
}
PDNode
*
patterns
::
FC
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
PDNode
*
x
,
bool
with_bias
)
{
// mul op
auto
*
mul_op
=
pattern
->
NewNode
(
name_scope
,
"mul"
)
->
assert_is_op
(
"mul"
);
auto
*
mul_weight_var
=
pattern
->
NewNode
(
name_scope
,
"w"
)
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"mul"
,
"Y"
);
PDNode
*
fc_out
{
nullptr
};
if
(
with_bias
)
{
PDNode
*
elementwise_add_op
{
nullptr
};
PDNode
*
mul_out_var
{
nullptr
},
*
bias
{
nullptr
};
elementwise_add_op
=
pattern
->
NewNode
(
name_scope
,
"elementwise_add"
)
->
assert_is_op
(
"elementwise_add"
);
// intermediate variable, will be removed in the IR after fuse.
mul_out_var
=
pattern
->
NewNode
(
name_scope
,
"mul_out"
)
->
AsIntermediate
()
->
assert_is_only_output_of_op
(
"mul"
)
->
assert_is_op_input
(
"elementwise_add"
);
// bias
bias
=
pattern
->
NewNode
(
name_scope
,
"fc_bias"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
);
// output
fc_out
=
pattern
->
NewNode
(
name_scope
,
"fc_out"
)
->
AsOutput
()
->
assert_is_op_output
(
"elementwise_add"
);
mul_op
->
LinksFrom
({
x
,
mul_weight_var
}).
LinksTo
({
mul_out_var
});
elementwise_add_op
->
LinksFrom
({
mul_out_var
,
bias
}).
LinksTo
({
fc_out
});
}
else
{
fc_out
=
pattern
->
NewNode
(
name_scope
,
"fc_out"
)
->
AsOutput
()
->
assert_is_op_output
(
"mul"
);
mul_op
->
LinksFrom
({
mul_weight_var
,
x
}).
LinksTo
({
fc_out
});
PDNode
*
patterns
::
FC
::
operator
()(
paddle
::
framework
::
ir
::
PDNode
*
x
,
bool
with_bias
)
{
// Create shared nodes.
x
->
assert_is_op_input
(
"mul"
,
"X"
);
auto
*
mul
=
pattern
->
NewNode
(
mul_repr
())
->
assert_is_op
(
"mul"
);
auto
*
mul_w_var
=
pattern
->
NewNode
(
w_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"mul"
,
"Y"
);
auto
*
mul_out_var
=
pattern
->
NewNode
(
mul_out_repr
())
->
assert_is_op_output
(
"mul"
);
if
(
!
with_bias
)
{
// not with bias
// Add links.
mul
->
LinksFrom
({
x
,
mul_w_var
}).
LinksTo
({
mul_out_var
});
return
mul_out_var
;
}
else
{
// with bias
mul_out_var
->
AsIntermediate
()
->
assert_is_op_input
(
"elementwise_add"
);
// Create operators.
auto
*
elementwise_add
=
pattern
->
NewNode
(
elementwise_add_repr
())
->
assert_is_op
(
"elementwise_add"
);
// Create variables.
auto
*
bias
=
pattern
->
NewNode
(
bias_repr
())
->
assert_is_op_input
(
"elementwise_add"
)
->
AsInput
();
auto
*
fc_out
=
pattern
->
NewNode
(
Out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"elementwise_add"
);
mul
->
LinksFrom
({
mul_w_var
,
x
}).
LinksTo
({
mul_out_var
});
elementwise_add
->
LinksFrom
({
mul_out_var
,
bias
}).
LinksTo
({
fc_out
});
return
fc_out
;
}
return
fc_out
;
}
#define NEW_NODE(op__, arg__, io__) \
auto* arg__ = pattern->NewNode(name_scope, #arg__) \
->assert_is_op_##io__(#op__, #arg__);
PDNode
*
patterns
::
LSTM
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
PDNode
*
x
)
{
PDNode
*
patterns
::
LSTM
::
operator
()(
PDNode
*
x
)
{
x
->
assert_is_op_input
(
"lstm"
,
"Input"
);
auto
*
lstm_op
=
pattern
->
NewNode
(
name_scope
,
"lstm"
)
->
assert_is_op
(
"lstm"
);
auto
*
lstm_op
=
pattern
->
NewNode
(
lstm_repr
())
->
assert_is_op
(
"lstm"
);
#define NEW_NODE(arg__, io__) \
auto* arg__ = \
pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
// Currently, the H0 and C0 are optional
// TODO(Superjomn) upgrade the fuse framework to support optional.
// NEW_NODE(H0, input);
// NEW_NODE(C0, input);
NEW_NODE
(
lstm
,
Weight
,
input
);
NEW_NODE
(
lstm
,
Bias
,
input
);
NEW_NODE
(
Weight
,
input
);
NEW_NODE
(
Bias
,
input
);
NEW_NODE
(
lstm
,
Hidden
,
output
);
NEW_NODE
(
lstm
,
Cell
,
output
);
NEW_NODE
(
lstm
,
BatchGate
,
output
);
NEW_NODE
(
lstm
,
BatchCellPreAct
,
output
);
NEW_NODE
(
Hidden
,
output
);
NEW_NODE
(
Cell
,
output
);
NEW_NODE
(
BatchGate
,
output
);
NEW_NODE
(
BatchCellPreAct
,
output
);
#undef NEW_NODE
lstm_op
->
LinksFrom
({
x
,
Weight
,
Bias
});
lstm_op
->
LinksTo
({
Hidden
,
Cell
,
BatchGate
,
BatchCellPreAct
});
return
Hidden
;
}
PDNode
*
patterns
::
GRU
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
PDNode
*
x
)
{
PDNode
*
patterns
::
GRU
::
operator
()(
PDNode
*
x
)
{
x
->
assert_is_op_input
(
"gru"
,
"Input"
);
auto
*
gru_op
=
pattern
->
NewNode
(
name_scope
,
"gru"
)
->
assert_is_op
(
"gru"
);
auto
*
gru_op
=
pattern
->
NewNode
(
gru_repr
())
->
assert_is_op
(
"gru"
);
#define NEW_NODE(arg__, io__) \
auto* arg__ = \
pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
NEW_NODE
(
gru
,
Weight
,
input
);
NEW_NODE
(
Weight
,
input
);
// TODO(Superjomn): upgrade the fuse framework to support optional.
// H0 and bias are optional
NEW_NODE
(
gru
,
Bias
,
input
);
// also optional
NEW_NODE
(
Bias
,
input
);
// also optional
// NEW_NODE(H0, input);
NEW_NODE
(
gru
,
Hidden
,
output
);
NEW_NODE
(
Hidden
,
output
);
// below are intermediate
NEW_NODE
(
gru
,
BatchGate
,
output
);
NEW_NODE
(
gru
,
BatchResetHiddenPrev
,
output
);
NEW_NODE
(
gru
,
BatchHidden
,
output
);
NEW_NODE
(
BatchGate
,
output
);
NEW_NODE
(
BatchResetHiddenPrev
,
output
);
NEW_NODE
(
BatchHidden
,
output
);
#undef NEW_NODE
BatchGate
->
AsIntermediate
();
BatchResetHiddenPrev
->
AsIntermediate
();
...
...
@@ -607,7 +609,6 @@ PDNode* patterns::GRU(PDPattern* pattern, const std::string& name_scope,
gru_op
->
LinksTo
({
Hidden
,
BatchGate
,
BatchResetHiddenPrev
,
BatchHidden
});
return
Hidden
;
}
#undef NEW_NODE
}
// namespace ir
}
// namespace framework
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
5558784c
...
...
@@ -286,22 +286,148 @@ void GraphSafeRemoveNodes(Graph* graph,
const
std
::
unordered_set
<
const
Node
*>&
nodes
);
// Some pre-defined patterns those can be reused in multiple passes.
// The related Fluid Layer or Op should be one pattern here for better reusage
// accross different fusion.
namespace
patterns
{
struct
KeyCounter
{
static
KeyCounter
&
Instance
()
{
static
KeyCounter
x
;
return
x
;
}
int
IncCounter
(
const
std
::
string
&
key
)
{
return
dic_
[
key
]
++
;
}
private:
std
::
unordered_map
<
std
::
string
,
size_t
>
dic_
;
};
// Generate a unique PDNode's name with name_scope and id.
// The format is {name_scope}/{repr}/{id}/{name}
static
std
::
string
PDNodeName
(
const
std
::
string
&
name_scope
,
const
std
::
string
&
repr
,
size_t
id
,
const
std
::
string
&
name
)
{
return
string
::
Sprintf
(
"%s/%s/%d/%s"
,
name_scope
,
repr
,
id
,
name
);
}
// Generate a unique PDNode's name.
// The format is {name_scope}/{repr}/{id}
static
std
::
string
PDNodeName
(
const
std
::
string
&
name_scope
,
const
std
::
string
&
repr
)
{
return
string
::
Sprintf
(
"%s/%s/%d"
,
name_scope
,
repr
,
KeyCounter
::
Instance
().
IncCounter
(
repr
));
}
// Generate a unique key. It can be used for a universally unique temporary
// name.
// The format is {repr}/{id}
static
std
::
string
UniqueKey
(
const
std
::
string
&
repr
)
{
return
string
::
Sprintf
(
"%s/%d"
,
repr
,
KeyCounter
::
Instance
().
IncCounter
(
repr
));
}
// Declare a PDNode in a pattern, will create two methods:
// std::string xxx_repr(); return this PDNode's string id.
// PDNode* xxx_n(); return the corresponding PDNode.
#define PATTERN_DECL_NODE(name__) \
std::string name__##_repr() const { \
return PDNodeName(name_scope_, repr_, id_, #name__); \
} \
PDNode* name__##_n() const { return pattern->RetrieveNode(name__##_repr()); }
// Get an ir::Node* from the matched subgraph.
// var: variable.
// arg: the argument declared by PATTERN_DECL_NODE in a pattern definition.
// pat: the pattern object.
#define GET_IR_NODE_FROM_SUBGRAPH(var, arg, pat) \
PADDLE_ENFORCE(subgraph.count(pat.arg##_n()), \
"Node not found for PDNode %s", pat.arg##_repr()); \
Node* var = subgraph.at(pat.arg##_n()); \
PADDLE_ENFORCE(var, "node %s not exists in the sub-graph", #arg)
// The base class of all the patterns.
struct
PatternBase
{
PatternBase
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
const
std
::
string
&
repr
)
:
pattern
(
pattern
),
name_scope_
(
name_scope
),
repr_
(
repr
),
id_
(
KeyCounter
::
Instance
().
IncCounter
(
repr
))
{}
PDPattern
*
pattern
;
protected:
std
::
string
name_scope_
;
std
::
string
repr_
;
size_t
id_
;
};
// FC with bias
// op: mul + elementwise_add
// named nodes:
// mul, elementwise_add
// w, mul_out, bias, fc_out
PDNode
*
FC
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
PDNode
*
x
,
bool
with_bias
);
struct
FC
:
public
PatternBase
{
FC
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"fc"
)
{}
PDNode
*
operator
()(
PDNode
*
x
,
bool
with_bias
);
// declare operator node's name
PATTERN_DECL_NODE
(
fc
);
PATTERN_DECL_NODE
(
mul
);
PATTERN_DECL_NODE
(
elementwise_add
);
// declare variable node's name
PATTERN_DECL_NODE
(
w
);
PATTERN_DECL_NODE
(
mul_out
);
// (x,w) -> mul_out
PATTERN_DECL_NODE
(
bias
);
PATTERN_DECL_NODE
(
Out
);
};
struct
LSTM
:
public
PatternBase
{
LSTM
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"lstm"
)
{}
PDNode
*
LSTM
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
PDNode
*
x
);
PDNode
*
operator
()(
PDNode
*
x
);
PDNode
*
GRU
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
PDNode
*
x
);
// Operators
PATTERN_DECL_NODE
(
lstm
);
// Inputs
PATTERN_DECL_NODE
(
Input
);
PATTERN_DECL_NODE
(
H0
);
PATTERN_DECL_NODE
(
C0
);
PATTERN_DECL_NODE
(
Weight
);
PATTERN_DECL_NODE
(
Bias
);
// Outputs
PATTERN_DECL_NODE
(
Hidden
);
PATTERN_DECL_NODE
(
Cell
);
PATTERN_DECL_NODE
(
BatchGate
);
PATTERN_DECL_NODE
(
BatchCellPreAct
);
};
struct
GRU
:
public
PatternBase
{
GRU
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"lstm"
)
{}
PDNode
*
operator
()(
PDNode
*
x
);
// Operators
PATTERN_DECL_NODE
(
gru
);
// Inputs
PATTERN_DECL_NODE
(
Bias
);
PATTERN_DECL_NODE
(
Weight
);
// Outputs
PATTERN_DECL_NODE
(
BatchGate
);
PATTERN_DECL_NODE
(
BatchResetHiddenPrev
);
PATTERN_DECL_NODE
(
BatchHidden
);
PATTERN_DECL_NODE
(
Hidden
);
};
}
// namespace patterns
// Link two ir::Nodes from each other.
#define IR_NODE_LINK_TO(a, b) \
a->outputs.push_back(b); \
b->inputs.push_back(a);
...
...
paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc
浏览文件 @
5558784c
...
...
@@ -192,6 +192,8 @@ std::unique_ptr<ir::Graph> SeqConcatFcFusePass::ApplyImpl(
auto* id = subgraph.at(pattern.RetrieveNode(#id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id);
int
fuse_count
{
0
};
detector
(
graph
.
get
(),
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"get one concat pattern"
;
...
...
@@ -239,8 +241,12 @@ std::unique_ptr<ir::Graph> SeqConcatFcFusePass::ApplyImpl(
marked_nodes
.
erase
(
sequence_expand1_in
);
marked_nodes
.
erase
(
fc_out
);
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
++
fuse_count
;
});
AddStatis
(
fuse_count
);
return
graph
;
}
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
5558784c
...
...
@@ -48,18 +48,18 @@ function (inference_download_and_uncompress install_dir url gz_filename)
message
(
STATUS
"finish downloading
${
gz_filename
}
"
)
endfunction
(
inference_download_and_uncompress
)
set
(
DITU_RNN_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid
%2Fmodel.tar.gz"
)
set
(
DITU_RNN_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid
%2Fdata.txt.tar.gz"
)
set
(
DITU_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/ditu_rnn"
CACHE PATH
"Ditu RNN
model and data root."
FORCE
)
if
(
NOT EXISTS
${
DITU
_INSTALL_DIR
}
AND WITH_TESTING
)
inference_download_and_uncompress
(
${
DITU_INSTALL_DIR
}
${
DITU_RNN_MODEL_URL
}
"ditu_rnn_fluid
%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
${
DITU_INSTALL_DIR
}
${
DITU_RNN_DATA_URL
}
"ditu_rnn_fluid
%2Fdata.txt.tar.gz"
)
set
(
RNN1_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/rnn1
%2Fmodel.tar.gz"
)
set
(
RNN1_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/rnn1
%2Fdata.txt.tar.gz"
)
set
(
RNN1_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/rnn1"
CACHE PATH
"RNN1
model and data root."
FORCE
)
if
(
NOT EXISTS
${
RNN1
_INSTALL_DIR
}
AND WITH_TESTING
)
inference_download_and_uncompress
(
${
RNN1_INSTALL_DIR
}
${
RNN1_MODEL_URL
}
"rnn1
%2Fmodel.tar.gz"
)
inference_download_and_uncompress
(
${
RNN1_INSTALL_DIR
}
${
RNN1_DATA_URL
}
"rnn1
%2Fdata.txt.tar.gz"
)
endif
()
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --infer_
ditu_rnn_model=
${
DITU
_INSTALL_DIR
}
/model
--infer_d
itu_rnn_data=
${
DITU
_INSTALL_DIR
}
/data.txt
)
ARGS --infer_
model=
${
RNN1
_INSTALL_DIR
}
/model
--infer_d
ata=
${
RNN1
_INSTALL_DIR
}
/data.txt
)
inference_analysis_test
(
test_data_flow_graph SRCS data_flow_graph_tester.cc
)
inference_analysis_test
(
test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc
)
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
5558784c
...
...
@@ -26,8 +26,8 @@
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
DEFINE_string
(
infer_
ditu_rnn_model
,
""
,
"model path for ditu RNN
"
);
DEFINE_string
(
infer_d
itu_rnn_data
,
""
,
"data path for ditu RNN
"
);
DEFINE_string
(
infer_
model
,
""
,
"model path
"
);
DEFINE_string
(
infer_d
ata
,
""
,
"data path
"
);
DEFINE_int32
(
batch_size
,
10
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"Running the inference program repeat times."
);
DEFINE_int32
(
num_threads
,
1
,
"Running the inference program in multi-threads."
);
...
...
@@ -223,17 +223,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
// namespace
const
float
ditu_rnn_target_data
[]
=
{
104.711
,
11.2431
,
1.35422
,
0
,
0
,
0
,
0
,
0
,
27.7039
,
1.41486
,
7.09526
,
0
,
0
,
0
,
0
,
0
,
7.6481
,
6.5324
,
56.383
,
2.88018
,
8.92918
,
132.007
,
4.27429
,
2.02934
,
14.1727
,
10.7461
,
25.0616
,
16.0197
,
14.4163
,
16.9199
,
6.75517
,
0
,
80.0249
,
4.77739
,
0
,
0
,
0
,
0
,
0
,
0
,
47.5643
,
2.67029
,
8.76252
,
0
,
0
,
0
,
0
,
0
,
51.8822
,
4.4411
,
0
,
0
,
0
,
0
,
0
,
0
,
10.7286
,
12.0595
,
10.6672
,
0
,
0
,
0
,
0
,
0
,
93.5771
,
3.84641
,
0
,
0
,
0
,
0
,
0
,
0
,
169.426
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
void
CompareResult
(
const
std
::
vector
<
PaddleTensor
>
&
outputs
,
const
std
::
vector
<
PaddleTensor
>
&
base_outputs
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
...
...
@@ -255,11 +244,10 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
}
}
// Test with a really complicate model.
void
TestDituRNNPrediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
void
TestRNN1Prediction
(
bool
use_analysis
,
bool
activate_ir
,
int
num_threads
)
{
AnalysisConfig
config
;
config
.
prog_file
=
FLAGS_infer_
ditu_rnn_
model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_
ditu_rnn_
model
+
"/param"
;
config
.
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
...
...
@@ -267,6 +255,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
PADDLE_ENFORCE
(
config
.
ir_mode
==
AnalysisConfig
::
IrPassMode
::
kExclude
);
// default
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
int
batch_size
=
FLAGS_batch_size
;
int
num_times
=
FLAGS_repeat
;
...
...
@@ -276,7 +265,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_d
itu_rnn_d
ata
,
batch_size
);
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
// Prepare inputs.
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
,
base_outputs
;
...
...
@@ -306,7 +295,7 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
threads
.
emplace_back
([
&
,
tid
]()
{
// Each thread should have local input_slots and outputs.
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
FLAGS_infer_d
itu_rnn_d
ata
,
batch_size
);
DataRecord
data
(
FLAGS_infer_data
,
batch_size
);
PrepareInputs
(
&
input_slots
,
&
data
,
batch_size
);
std
::
vector
<
PaddleTensor
>
outputs
;
Timer
timer
;
...
...
@@ -346,30 +335,29 @@ void TestDituRNNPrediction(bool use_analysis, bool activate_ir,
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
1
);
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_nobias_lstm_fuse"
),
2
);
// bi-directional LSTM
EXPECT_EQ
(
fuse_statis
.
at
(
"seq_concat_fc_fuse"
),
1
);
EXPECT_EQ
(
num_ops
,
13
);
// After graph optimization, only 13 operators exists.
}
}
// Inference with analysis and IR, easy for profiling independently.
TEST
(
Analyzer
,
DituRNN
)
{
TestDituRNNPrediction
(
true
,
true
,
FLAGS_num_threads
);
}
TEST
(
Analyzer
,
rnn1
)
{
TestRNN1Prediction
(
true
,
true
,
FLAGS_num_threads
);
}
// Other unit-tests of
DituRNN
, test different options of use_analysis,
// Other unit-tests of
RNN1
, test different options of use_analysis,
// activate_ir and multi-threads.
TEST
(
Analyzer
,
Ditu
RNN_tests
)
{
TEST
(
Analyzer
,
RNN_tests
)
{
int
num_threads
[
2
]
=
{
1
,
4
};
for
(
auto
i
:
num_threads
)
{
// Directly infer with the original model.
Test
DituRNN
Prediction
(
false
,
false
,
i
);
Test
RNN1
Prediction
(
false
,
false
,
i
);
// Inference with the original model with the analysis turned on, the
// analysis
// module will transform the program to a data flow graph.
Test
DituRNN
Prediction
(
true
,
false
,
i
);
Test
RNN1
Prediction
(
true
,
false
,
i
);
// Inference with analysis and IR. The IR module will fuse some large
// kernels.
Test
DituRNN
Prediction
(
true
,
true
,
i
);
Test
RNN1
Prediction
(
true
,
true
,
i
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录