Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
55164761
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
55164761
编写于
1月 25, 2022
作者:
F
fwenguang
提交者:
GitHub
1月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu batch_norm kernel pytest (#39071)
上级
ac3dc0bb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
997 addition
and
0 deletion
+997
-0
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu.py
...addle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu.py
+702
-0
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu_v2.py
...le/fluid/tests/unittests/mlu/test_batch_norm_op_mlu_v2.py
+295
-0
未找到文件。
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu.py
0 → 100644
浏览文件 @
55164761
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
,
_set_use_system_allocator
from
paddle.fluid.framework
import
grad_var_name
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
_set_use_system_allocator
(
True
)
def
_reference_testing
(
x
,
scale
,
offset
,
mean
,
var
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
2
:
if
data_format
==
"NCHW"
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
x
.
shape
[
1
],
1
,
1
))
else
:
x
=
np
.
reshape
(
x
,
(
x
.
shape
[
0
],
1
,
1
,
x
.
shape
[
1
]))
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
mean_tile
=
np
.
reshape
(
mean
,
(
1
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
n
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
1
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
n
,
1
,
h
,
w
))
normalized
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
elif
data_format
==
"NHWC"
:
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
y
=
normalized
*
scale
+
offset
else
:
raise
ValueError
(
"Unknown data order."
)
if
len
(
x_shape
)
==
2
or
len
(
x_shape
)
==
3
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
def
_cal_mean_variance
(
x
,
epsilon
,
data_format
):
assert
data_format
in
[
'NCHW'
,
'NHWC'
]
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
x_square
=
x
*
x
axis
=
(
0
,
2
,
3
)
if
data_format
==
'NCHW'
else
(
0
,
1
,
2
)
C
=
x
.
shape
[
1
]
if
data_format
==
'NCHW'
else
x
.
shape
[
-
1
]
x_square_sum
=
np
.
sum
(
x_square
,
axis
)
x_sum
=
np
.
sum
(
x
,
axis
=
axis
)
element_count
=
np
.
size
(
x
)
/
C
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
return
mean
,
var
def
_reference_training
(
x
,
scale
,
offset
,
epsilon
,
data_format
):
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
if
data_format
==
"NCHW"
:
n
,
c
,
h
,
w
=
x
.
shape
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
2
,
3
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
2
,
3
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
mean_tile
=
np
.
reshape
(
mean
,
(
1
,
c
,
1
,
1
))
mean_tile
=
np
.
tile
(
mean_tile
,
(
n
,
1
,
h
,
w
))
var_tile
=
np
.
reshape
(
var
,
(
1
,
c
,
1
,
1
))
var_tile
=
np
.
tile
(
var_tile
,
(
n
,
1
,
h
,
w
))
normalized
=
(
x
-
mean_tile
)
/
np
.
sqrt
(
var_tile
+
epsilon
)
scale_tile
=
np
.
reshape
(
scale
,
(
1
,
c
,
1
,
1
))
scale_tile
=
np
.
tile
(
scale_tile
,
(
n
,
1
,
h
,
w
))
offset_tile
=
np
.
reshape
(
offset
,
(
1
,
c
,
1
,
1
))
offset_tile
=
np
.
reshape
(
offset_tile
,
(
1
,
c
,
1
,
1
))
y
=
normalized
*
scale_tile
+
offset_tile
elif
data_format
==
"NHWC"
:
x_square
=
x
*
x
x_square_sum
=
np
.
sum
(
x_square
,
(
0
,
1
,
2
))
x_sum
=
np
.
sum
(
x
,
axis
=
(
0
,
1
,
2
))
element_count
=
np
.
size
(
x
)
/
int
(
np
.
shape
(
x
)[
-
1
])
mean
=
x_sum
/
element_count
var
=
x_square_sum
/
element_count
-
mean
*
mean
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
)
y
=
normalized
*
scale
+
offset
else
:
raise
ValueError
(
"Unknown data order."
)
if
len
(
x_shape
)
==
3
:
y
=
np
.
reshape
(
y
,
x_shape
)
return
y
,
mean
,
var
def
_reference_grad
(
x
,
y_grad
,
scale
,
mean
,
var
,
epsilon
,
data_format
):
# Use the following formulas to calculate gradients:
# grad_scale =
# sum(grad_y * (x - mean)) * rsqrt(var + epsilon)
#
# grad_offset = sum(output_y)
#
# x_grad =
# 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) -
# (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon))
# transfer from (N, C, H, W) to (N, H, W, C) to simplify computation
if
data_format
!=
"NCHW"
and
data_format
!=
"NHWC"
:
raise
ValueError
(
"Unknown data order."
)
x_shape
=
x
.
shape
if
len
(
x_shape
)
==
3
:
if
data_format
==
"NCHW"
:
# NCL -> NCL1
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
y_grad
=
np
.
reshape
(
y_grad
,
(
x_shape
[
0
],
x_shape
[
1
],
x_shape
[
2
],
1
))
else
:
# NLC -> NL1C
x
=
np
.
reshape
(
x
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
y_grad
=
np
.
reshape
(
y_grad
,
(
x_shape
[
0
],
x_shape
[
1
],
1
,
x_shape
[
2
]))
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
2
,
3
,
1
))
x_grad
=
scale
*
(
y_grad
-
np
.
mean
(
y_grad
,
axis
=
(
0
,
1
,
2
))
-
(
x
-
mean
)
*
np
.
mean
(
y_grad
*
(
x
-
mean
),
axis
=
(
0
,
1
,
2
))
/
(
var
+
epsilon
))
/
np
.
sqrt
(
var
+
epsilon
)
grad_scale
=
np
.
sum
(
y_grad
*
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
),
axis
=
(
0
,
1
,
2
))
grad_offset
=
np
.
sum
(
y_grad
,
axis
=
(
0
,
1
,
2
))
# transfer back to N, C, H, W
if
data_format
==
"NCHW"
:
x_grad
=
np
.
transpose
(
x_grad
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
3
,
1
,
2
))
if
len
(
x_shape
)
==
3
:
x_grad
=
np
.
reshape
(
x_grad
,
x_shape
)
return
x_grad
,
grad_scale
,
grad_offset
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
if
var
is
not
None
:
assert
isinstance
(
var
,
np
.
ndarray
)
tensor
.
set_recursive_sequence_lengths
([])
tensor
.
set
(
var
,
place
)
return
tensor
def
set_output_grad
(
scope
,
outputs
,
place
,
feed_dict
=
None
):
def
__set_tensor__
(
name
,
data
=
None
):
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
var
(
grad_var_name
(
name
)).
get_tensor
()
out_dtype
=
out_tensor
.
dtype
()
if
data
is
None
:
if
out_dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float64
)
elif
out_dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
data
=
np
.
ones
(
out_tensor
.
shape
(),
dtype
=
np
.
float32
)
else
:
raise
ValueError
(
"Not supported data type "
+
str
(
out_dtype
))
grad_tensor
.
set
(
data
,
place
)
for
output
in
outputs
:
data
=
None
if
output
in
feed_dict
:
data
=
feed_dict
[
output
]
__set_tensor__
(
output
,
data
)
class
TestBatchNormOpInference
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
self
.
fuse_with_relu
=
False
self
.
init_kernel_type
()
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
def
check_with_place
(
self
,
place
,
data_layout
,
dtype
,
shape
):
epsilon
=
0.00001
if
len
(
shape
)
==
2
:
x_shape
=
shape
c
=
x_shape
[
1
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
if
data_layout
==
"NHWC"
:
x_shape
=
[
n
,
h
,
w
,
c
]
elif
data_layout
==
"NCHW"
:
x_shape
=
[
n
,
c
,
h
,
w
]
else
:
raise
ValueError
(
"Unknown data layout."
)
scale_shape
=
[
c
]
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
dtype
)
# generate some negative values to test case with relu fused
x_val
=
x_val
-
0.5
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
y_out
=
_reference_testing
(
x_val
,
scale_val
,
bias_val
,
mean
,
variance
,
epsilon
,
data_layout
).
astype
(
dtype
)
if
self
.
fuse_with_relu
:
y_out
=
np
.
maximum
(
y_out
,
0
)
scope
=
core
.
Scope
()
# create input
x_tensor
=
create_or_get_tensor
(
scope
,
"x_val"
,
OpTest
.
np_dtype_to_fluid_dtype
(
x_val
),
place
)
scale_tensor
=
create_or_get_tensor
(
scope
,
"scale_val"
,
OpTest
.
np_dtype_to_fluid_dtype
(
scale_val
),
place
)
bias_tensor
=
create_or_get_tensor
(
scope
,
"bias_val"
,
OpTest
.
np_dtype_to_fluid_dtype
(
bias_val
),
place
)
mean_tensor
=
create_or_get_tensor
(
scope
,
"mean"
,
OpTest
.
np_dtype_to_fluid_dtype
(
mean
),
place
)
variance_tensor
=
create_or_get_tensor
(
scope
,
"variance"
,
OpTest
.
np_dtype_to_fluid_dtype
(
variance
),
place
)
# create output
y_tensor
=
create_or_get_tensor
(
scope
,
"y_out"
,
None
,
place
)
saved_mean_tensor
=
create_or_get_tensor
(
scope
,
"saved_mean"
,
None
,
place
)
saved_variance_tensor
=
create_or_get_tensor
(
scope
,
"saved_variance"
,
None
,
place
)
mean_out_tensor
=
mean_tensor
variance_out_tensor
=
variance_tensor
batch_norm_op
=
Operator
(
"batch_norm"
,
# inputs
X
=
"x_val"
,
Scale
=
"scale_val"
,
Bias
=
"bias_val"
,
Mean
=
"mean"
,
Variance
=
"variance"
,
# outputs
Y
=
"y_out"
,
MeanOut
=
"mean"
,
VarianceOut
=
"variance"
,
SavedMean
=
"saved_mean"
,
SavedVariance
=
"saved_variance"
,
# attrs
is_test
=
True
,
data_layout
=
data_layout
,
use_mkldnn
=
False
,
fuse_with_relu
=
self
.
fuse_with_relu
,
epsilon
=
epsilon
)
batch_norm_op
.
run
(
scope
,
place
)
# check inference result
self
.
__assert_close
(
y_tensor
,
y_out
,
"inference output are different at "
+
str
(
place
)
+
", "
+
data_layout
+
", "
+
str
(
np
.
dtype
(
dtype
))
+
str
(
np
.
array
(
y_tensor
))
+
str
(
y_out
),
atol
=
1e-3
)
def
test_check_output
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
def
init_kernel_type
(
self
):
pass
class
TestFP16BatchNormOpInference
(
TestBatchNormOpInference
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float16
self
.
fuse_with_relu
=
False
self
.
init_kernel_type
()
def
test_check_output
(
self
):
places
=
[]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]:
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
class
TestBatchNormOpTraining
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
fuse_with_relu
=
False
self
.
data_formats
=
[
"NCHW"
,
"NHWC"
]
self
.
momentum
=
0.9
self
.
use_momentum_variable
=
False
self
.
epsilon
=
0.00001
self
.
init_kernel_type
()
self
.
init_test_case
()
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
)
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
# run forward
y
,
saved_mean
,
var_ref
=
_reference_training
(
x
,
scale
,
bias
,
epsilon
,
data_layout
)
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
_reference_grad
(
x
,
y_grad
,
scale
,
saved_mean
,
var_ref
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
def
set_mean_variance
(
self
,
scale_shape
,
x
,
data_layout
):
mean
,
variance
=
_cal_mean_variance
(
x
,
self
.
epsilon
,
data_layout
)
mean_pre
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance_pre
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
# computing global mean/variance for one step
if
self
.
use_global_stats
:
mom
=
self
.
momentum
mean
=
mean
*
(
1.
-
mom
)
+
mom
*
mean_pre
variance
=
variance
*
(
1.
-
mom
)
+
mom
*
variance_pre
return
mean
,
variance
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
data_layout
,
shape
):
# attr
epsilon
=
self
.
epsilon
momentum
=
self
.
momentum
if
data_layout
==
"NCHW"
:
n
,
c
,
h
,
w
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
else
:
n
,
h
,
w
,
c
=
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]
scale_shape
=
[
c
]
np
.
random
.
seed
(
123
)
x
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
scale
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
mean
,
variance
=
self
.
set_mean_variance
(
scale_shape
,
x
,
data_layout
)
y_grad
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
momentum_var
=
np
.
array
([
momentum
]).
astype
(
np
.
float32
)
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
=
self
.
ref_forward_backward
(
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
)
var_dict
=
locals
()
var_dict
[
'y@GRAD'
]
=
y_grad
var_dict
[
'x@GRAD'
]
=
x_grad
var_dict
[
'scale@GRAD'
]
=
scale_grad
var_dict
[
'bias@GRAD'
]
=
bias_grad
var_names
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
,
'y'
,
'saved_mean'
,
'saved_variance'
,
'momentum_var'
]
ground_truth
=
{
name
:
var_dict
[
name
]
for
name
in
var_names
}
program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
program
):
block
=
program
.
global_block
()
for
name
in
ground_truth
:
block
.
create_var
(
name
=
name
,
dtype
=
'float32'
,
shape
=
ground_truth
[
name
].
shape
)
inputs
=
{
"X"
:
block
.
var
(
'x'
),
"Scale"
:
block
.
var
(
'scale'
),
"Bias"
:
block
.
var
(
'bias'
),
"Mean"
:
block
.
var
(
'mean'
),
"Variance"
:
block
.
var
(
'variance'
)
}
attrs
=
{
"epsilon"
:
epsilon
,
"is_test"
:
False
,
"data_layout"
:
data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
self
.
fuse_with_relu
,
"use_global_stats"
:
self
.
use_global_stats
}
if
self
.
use_momentum_variable
:
inputs
[
'MomentumTensor'
]
=
block
.
var
(
'momentum_var'
)
else
:
attrs
[
'momentum'
]
=
momentum
outputs
=
{
"Y"
:
block
.
var
(
'y'
),
"MeanOut"
:
block
.
var
(
'mean'
),
# share memory
"VarianceOut"
:
block
.
var
(
'variance'
),
# share memory
"SavedMean"
:
block
.
var
(
'saved_mean'
),
"SavedVariance"
:
block
.
var
(
'saved_variance'
)
}
block
.
create_var
(
name
=
"reserve_space"
,
dtype
=
'float32'
)
outputs
[
"ReserveSpace"
]
=
block
.
var
(
'reserve_space'
)
bn_op
=
block
.
append_op
(
type
=
"batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
block
.
create_var
(
name
=
'y@GRAD'
,
dtype
=
'float32'
,
shape
=
y
.
shape
)
# generate backward op_desc
grad_op_desc_list
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
bn_op
.
desc
,
self
.
no_grad_set
,
[])
grad_op_desc
=
grad_op_desc_list
[
0
]
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
grad_op_desc
)
for
var_name
in
grad_op_desc
.
output_arg_names
():
block
.
desc
.
var
(
var_name
.
encode
(
"ascii"
))
grad_op_desc
.
infer_var_type
(
block
.
desc
)
grad_op_desc
.
infer_shape
(
block
.
desc
)
for
arg
in
grad_op_desc
.
output_arg_names
():
grad_var
=
block
.
desc
.
find_var
(
arg
.
encode
(
"ascii"
))
grad_var
.
set_dtype
(
core
.
VarDesc
.
VarType
.
FP32
)
program
.
_sync_with_cpp
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
program
,
feed
=
{
name
:
var_dict
[
name
]
for
name
in
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
,
'y@GRAD'
,
'momentum_var'
]
},
fetch_list
=
self
.
fetch_list
)
for
id
,
name
in
enumerate
(
self
.
fetch_list
):
if
name
==
'variance'
:
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
,
atol
=
1e-3
)
continue
self
.
__assert_close
(
var_dict
[
name
],
out
[
id
],
name
)
print
(
"op test forward passed: "
,
str
(
place
),
data_layout
)
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
core
.
MLUPlace
(
0
))
for
place
in
places
:
for
data_format
in
self
.
data_formats
:
test_with_place
(
place
,
data_format
,
[
2
,
3
,
4
,
5
])
def
init_kernel_type
(
self
):
pass
class
TestBatchNormOpTrainingCase1
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
([
'scale@GRAD'
,
'bias@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
]
class
TestBatchNormOpTrainingCase2
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
os
.
environ
[
'FLAGS_cudnn_batchnorm_spatial_persistent'
]
=
"1"
class
TestBatchNormOpTrainingCase3
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
([
'x@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'scale@GRAD'
,
'bias@GRAD'
]
class
TestBatchNormOpTrainingMomentumVariable
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_momentum_variable
=
True
self
.
use_global_stats
=
False
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'saved_mean'
,
'saved_variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
class
TestBatchNormOpFreezeStatsTraining
(
TestBatchNormOpTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
True
self
.
no_grad_set
=
set
()
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
,
'scale@GRAD'
,
'bias@GRAD'
]
def
reference_grad
(
self
,
x
,
y_grad
,
scale
,
mean
,
var
,
epsilon
,
data_format
):
if
data_format
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
2
,
3
,
1
))
x_grad
=
scale
*
y_grad
/
np
.
sqrt
(
var
+
epsilon
)
grad_scale
=
np
.
sum
(
y_grad
*
(
x
-
mean
)
/
np
.
sqrt
(
var
+
epsilon
),
axis
=
(
0
,
1
,
2
))
grad_offset
=
np
.
sum
(
y_grad
,
axis
=
(
0
,
1
,
2
))
# transfer back to N, C, H, W
if
data_format
==
"NCHW"
:
x_grad
=
np
.
transpose
(
x_grad
,
(
0
,
3
,
1
,
2
))
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y_grad
=
np
.
transpose
(
y_grad
,
(
0
,
3
,
1
,
2
))
return
x_grad
,
grad_scale
,
grad_offset
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
if
data_layout
!=
"NCHW"
and
data_layout
!=
"NHWC"
:
raise
ValueError
(
"Unknown data order."
)
if
data_layout
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
2
,
3
,
1
))
# run normalizaton
normalized
=
(
x
-
mean
)
/
np
.
sqrt
(
variance
+
epsilon
)
y
=
normalized
*
scale
+
bias
# transfer back to N, C, H, W
if
data_layout
==
"NCHW"
:
x
=
np
.
transpose
(
x
,
(
0
,
3
,
1
,
2
))
y
=
np
.
transpose
(
y
,
(
0
,
3
,
1
,
2
))
mean_out
=
mean
variance_out
=
variance
saved_variance
=
1.
/
np
.
sqrt
(
variance
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
self
.
reference_grad
(
x
,
y_grad
,
scale
,
mean
,
variance
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
class
TestBatchNormOpFreezeStatsAndScaleBiasTraining
(
TestBatchNormOpFreezeStatsTraining
):
def
init_test_case
(
self
):
self
.
use_global_stats
=
True
self
.
no_grad_set
=
set
([
'scale@GRAD'
,
'bias@GRAD'
])
self
.
fetch_list
=
[
'y'
,
'mean'
,
'variance'
,
'x@GRAD'
]
class
TestBatchNormOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of batch_norm must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
batch_norm
,
x1
)
# the input dtype of batch_norm must be float16 or float32 or float64
# float16 only can be set on GPU place
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
batch_norm
,
x2
)
class
TestDygraphBatchNormAPIError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
batch_norm
=
fluid
.
dygraph
.
BatchNorm
(
10
)
# the input of BatchNorm must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
batch_norm
,
x1
)
# the input dtype of BatchNorm must be float16 or float32 or float64
# float16 only can be set on GPU place
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"int32"
)
self
.
assertRaises
(
TypeError
,
batch_norm
,
x2
)
class
TestDygraphBatchNormTrainableStats
(
unittest
.
TestCase
):
def
test_dygraph
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
shape
=
[
4
,
10
,
4
,
4
]
def
compute
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute
(
x
,
False
,
False
)
y2
=
compute
(
x
,
True
,
True
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
def
test_static
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
exe
=
fluid
.
Executor
(
p
)
shape
=
[
4
,
10
,
16
,
16
]
def
compute
(
x_np
,
is_test
,
trainable_statistics
):
with
program_guard
(
Program
(),
Program
()):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute
(
x
,
False
,
False
)
y2
=
compute
(
x
,
True
,
True
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
class
TestDygraphBatchNormOpenReserveSpace
(
unittest
.
TestCase
):
def
test_reservespace
(
self
):
with
program_guard
(
Program
(),
Program
()):
paddle
.
enable_static
()
x
=
np
.
random
.
random
(
size
=
(
3
,
10
,
3
,
7
)).
astype
(
'float32'
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x
.
shape
,
dtype
=
x
.
dtype
)
# Set this FLAG, the BatchNorm API will pass "reserve_space" argument into batch_norm op.
os
.
environ
[
'FLAGS_cudnn_batchnorm_spatial_persistent'
]
=
'1'
batch_norm
=
fluid
.
dygraph
.
BatchNorm
(
7
,
data_layout
=
"NHWC"
)
hidden1
=
batch_norm
(
x
)
os
.
environ
[
'FLAGS_cudnn_batchnorm_spatial_persistent'
]
=
'0'
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_batch_norm_op_mlu_v2.py
0 → 100644
浏览文件 @
55164761
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
_set_use_system_allocator
from
paddle.fluid.framework
import
grad_var_name
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle
class
TestBatchNorm
(
unittest
.
TestCase
):
def
test_name
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
with
fluid
.
dygraph
.
guard
(
p
):
batch_norm1d
=
paddle
.
nn
.
BatchNorm1D
(
1
,
name
=
"test"
)
def
test_error
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
#paddle.disable_static()
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
x_data_3
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
)).
astype
(
'float32'
)
def
error1d_dataformat
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm1d
=
paddle
.
nn
.
BatchNorm1D
(
1
,
data_format
=
'NCDHW'
)
batch_norm1d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
def
error2d_dataformat
():
x_data_3
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
)).
astype
(
'float32'
)
batch_norm2d
=
paddle
.
nn
.
BatchNorm2D
(
1
,
data_format
=
'NCDHW'
)
batch_norm2d
(
fluid
.
dygraph
.
to_variable
(
x_data_3
))
def
error3d_dataformat
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm3d
=
paddle
.
nn
.
BatchNorm3D
(
1
,
data_format
=
'NCL'
)
batch_norm3d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
def
error1d
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm1d
=
paddle
.
nn
.
BatchNorm1D
(
1
)
batch_norm1d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
def
error2d
():
x_data_3
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
)).
astype
(
'float32'
)
batch_norm2d
=
paddle
.
nn
.
BatchNorm2D
(
1
)
batch_norm2d
(
fluid
.
dygraph
.
to_variable
(
x_data_3
))
def
error3d
():
x_data_4
=
np
.
random
.
random
(
size
=
(
2
,
1
,
3
,
3
)).
astype
(
'float32'
)
batch_norm3d
=
paddle
.
nn
.
BatchNorm3D
(
1
)
batch_norm3d
(
fluid
.
dygraph
.
to_variable
(
x_data_4
))
with
fluid
.
dygraph
.
guard
(
p
):
self
.
assertRaises
(
ValueError
,
error1d
)
self
.
assertRaises
(
ValueError
,
error2d
)
self
.
assertRaises
(
ValueError
,
error3d
)
self
.
assertRaises
(
ValueError
,
error1d_dataformat
)
self
.
assertRaises
(
ValueError
,
error2d_dataformat
)
self
.
assertRaises
(
ValueError
,
error3d_dataformat
)
def
test_dygraph
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
shape
=
[
4
,
10
,
4
,
4
]
def
compute_v1
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
def
compute_v2
(
x
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
paddle
.
nn
.
BatchNorm2D
(
shape
[
1
])
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
def
compute_v3
(
x
,
is_test
,
trainable_statistics
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
False
),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
False
),
trainable_statistics
=
trainable_statistics
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
def
compute_v4
(
x
):
with
fluid
.
dygraph
.
guard
(
p
):
bn
=
paddle
.
nn
.
BatchNorm2D
(
shape
[
1
],
weight_attr
=
False
,
bias_attr
=
False
)
y
=
bn
(
fluid
.
dygraph
.
to_variable
(
x
))
return
y
.
numpy
()
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute_v1
(
x
,
False
,
False
)
y2
=
compute_v2
(
x
)
y3
=
compute_v3
(
x
,
False
,
False
)
y4
=
compute_v4
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
self
.
assertTrue
(
np
.
allclose
(
y3
,
y4
))
def
test_static
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
places
.
append
(
fluid
.
MLUPlace
(
0
))
for
p
in
places
:
exe
=
fluid
.
Executor
(
p
)
shape
=
[
4
,
10
,
16
,
16
]
def
compute_v1
(
x_np
,
is_test
,
trainable_statistics
):
with
program_guard
(
Program
(),
Program
()):
bn
=
fluid
.
dygraph
.
BatchNorm
(
shape
[
1
],
is_test
=
is_test
,
trainable_statistics
=
trainable_statistics
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
def
compute_v2
(
x_np
):
with
program_guard
(
Program
(),
Program
()):
bn
=
paddle
.
nn
.
BatchNorm2D
(
shape
[
1
])
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
x_np
.
shape
,
dtype
=
x_np
.
dtype
)
y
=
bn
(
x
)
exe
.
run
(
fluid
.
default_startup_program
())
r
=
exe
.
run
(
feed
=
{
'x'
:
x_np
},
fetch_list
=
[
y
])[
0
]
return
r
x
=
np
.
random
.
randn
(
*
shape
).
astype
(
"float32"
)
y1
=
compute_v1
(
x
,
False
,
False
)
y2
=
compute_v2
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y1
,
y2
))
class
TestBatchNormChannelLast
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
original_dtyep
=
paddle
.
get_default_dtype
()
paddle
.
set_default_dtype
(
"float32"
)
self
.
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
self
.
places
.
append
(
fluid
.
MLUPlace
(
0
))
def
tearDown
(
self
):
paddle
.
set_default_dtype
(
self
.
original_dtyep
)
def
test_1d
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
4
])
net1
=
paddle
.
nn
.
BatchNorm1D
(
4
,
data_format
=
"NLC"
)
net2
=
paddle
.
nn
.
BatchNorm1D
(
4
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
y1
=
net1
(
x
)
channel_first_x
=
paddle
.
transpose
(
x
,
[
0
,
2
,
1
])
y2
=
net2
(
channel_first_x
)
y2
=
paddle
.
transpose
(
y2
,
[
0
,
2
,
1
])
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-07
),
True
)
def
test_2d
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
4
])
net1
=
paddle
.
nn
.
BatchNorm2D
(
4
,
data_format
=
"NHWC"
)
net2
=
paddle
.
nn
.
BatchNorm2D
(
4
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
y1
=
net1
(
x
)
channel_first_x
=
paddle
.
transpose
(
x
,
[
0
,
3
,
1
,
2
])
y2
=
net2
(
channel_first_x
)
y2
=
paddle
.
transpose
(
y2
,
[
0
,
2
,
3
,
1
])
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-07
),
True
)
def
test_3d
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
6
,
4
])
net1
=
paddle
.
nn
.
BatchNorm3D
(
4
,
data_format
=
"NDHWC"
)
net2
=
paddle
.
nn
.
BatchNorm3D
(
4
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
y1
=
net1
(
x
)
channel_first_x
=
paddle
.
transpose
(
x
,
[
0
,
4
,
1
,
2
,
3
])
y2
=
net2
(
channel_first_x
)
y2
=
paddle
.
transpose
(
y2
,
[
0
,
2
,
3
,
4
,
1
])
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-07
),
True
)
# res = np.allclose(y1.numpy(), y2.numpy())
# if res == False:
# np.savetxt("./y1.txt", y1.numpy().flatten(), fmt='%.10f', delimiter='\n')
# np.savetxt("./y2.txt", y2.numpy().flatten(), fmt='%.10f', delimiter='\n')
# self.assertEqual(res, True)
class
TestBatchNormUseGlobalStats
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_mlu
():
self
.
places
.
append
(
fluid
.
MLUPlace
(
0
))
self
.
init_test
()
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
False
def
test_global_stats
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
4
])
net1
=
paddle
.
fluid
.
dygraph
.
BatchNorm
(
6
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
use_global_stats
=
self
.
use_global_stats
,
trainable_statistics
=
self
.
trainable_statistics
)
net2
=
paddle
.
nn
.
BatchNorm2D
(
6
,
use_global_stats
=
self
.
use_global_stats
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
if
self
.
trainable_statistics
==
True
:
net1
.
training
=
False
net2
.
training
=
False
y1
=
net1
(
x
)
y2
=
net2
(
x
)
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
()),
True
)
class
TestBatchNormUseGlobalStatsCase1
(
TestBatchNormUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
False
self
.
trainable_statistics
=
True
class
TestBatchNormUseGlobalStatsCase2
(
TestBatchNormUseGlobalStats
):
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
False
self
.
trainable_statistics
=
False
class
TestBatchNormUseGlobalStatsCase3
(
TestBatchNormUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
True
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录