未验证 提交 54c7dfa6 编写于 作者: Y yaozhixin 提交者: GitHub

[IPU] add Op uts (#44415)

上级 8753a2bf
...@@ -17,7 +17,7 @@ import unittest ...@@ -17,7 +17,7 @@ import unittest
import numpy as np import numpy as np
import paddle import paddle
import paddle.static import paddle.static
from op_test_ipu import IPUOpTest from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest): class TestBase(IPUOpTest):
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
def set_data_feed(self):
data = np.random.uniform(size=[2, 3, 1])
self.feed_fp32 = {'in_0': data.astype(np.float32)}
self.feed_fp16 = {'in_0': data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
y = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
self.main_prog.global_block().append_op(type="share_data",
inputs={"X": x},
outputs={'Out': y})
out = paddle.fluid.layers.elementwise_add(y, y)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestCase1(TestBase):
def set_data_feed(self):
data = np.random.uniform(size=[2, 3, 1])
self.feed_fp32 = {'in_0': data.astype(np.float32)}
self.feed_fp16 = {'in_0': data.astype(np.float16)}
data = np.random.uniform(size=[2, 3, 1])
self.assign_fp32 = data.astype(np.float32)
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
y = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
self.main_prog.global_block().append_op(type="share_data",
inputs={"X": x},
outputs={'Out': y})
out = paddle.fluid.layers.elementwise_add(x, y)
self.fetch_list = [out.name]
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
data = np.random.uniform(size=[3, 4, 5, 6])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {
"axes": [1, 2, 3],
"starts": [-3, 0, 2],
"ends": [3, 2, 4],
"strides": [1, 1, 1]
}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
out = paddle.fluid.layers.strided_slice(x, **self.attrs)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestCase1(TestBase):
def set_data_feed(self):
data = np.random.uniform(size=[2, 4])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_op_attrs(self):
self.attrs = {
"axes": [0, 1],
"starts": [1, 3],
"ends": [2, 0],
"strides": [1, -1]
}
@unittest.skip('Only strides of 1 or -1 are supported.')
class TestCase2(TestBase):
def set_data_feed(self):
data = np.random.uniform(size=[2, 4])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_op_attrs(self):
self.attrs = {
"axes": [0, 1],
"starts": [1, 3],
"ends": [-1, 1000],
"strides": [1, 3]
}
@unittest.skip('dynamic graph is not support on IPU')
class TestCase3(TestBase):
def set_data_feed(self):
x = np.random.uniform(size=[4, 5, 6])
s = np.array([0, 0, 2])
e = np.array([3, 2, 4])
self.feed_fp32 = {
"x": x.astype(np.float32),
"starts": s.astype(np.int32),
"ends": e.astype(np.int32)
}
self.feed_fp16 = {
"x": x.astype(np.float16),
"starts": s.astype(np.int32),
"ends": e.astype(np.int32)
}
def set_op_attrs(self):
self.attrs = {"strides": [1, 1, 1], "axes": [0, 1, 2]}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
starts = paddle.static.data(name=self.feed_list[1],
shape=self.feed_shape[1],
dtype='int32')
ends = paddle.static.data(name=self.feed_list[2],
shape=self.feed_shape[2],
dtype='int32')
out = paddle.fluid.layers.strided_slice(x,
starts=starts,
ends=ends,
**self.attrs)
self.fetch_list = [out.name]
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
data = np.random.uniform(size=[4, 5, 6])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {
"repeat_times": [1, 2],
}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
out = paddle.tile(x, **self.attrs)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestCase1(TestBase):
def set_op_attrs(self):
self.attrs = {
"repeat_times": [2, 3, 2],
}
@unittest.skip('dynamic graph is not support on IPU')
class TestCase3(TestBase):
def set_data_feed(self):
x = np.random.uniform(size=[4, 5, 6])
r = np.array([3, 2, 4])
self.feed_fp32 = {
"x": x.astype(np.float32),
"repeat_times": r.astype(np.int32),
}
self.feed_fp16 = {
"x": x.astype(np.float16),
"repeat_times": r.astype(np.int32),
}
def set_op_attrs(self):
self.attrs = {}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
r = paddle.static.data(name=self.feed_list[1],
shape=self.feed_shape[1],
dtype='int32')
out = paddle.tile(x, repeat_times=r, **self.attrs)
self.fetch_list = [out.name]
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
data = np.random.uniform(size=[4, 5, 6])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {
"axis": 1,
}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
out = paddle.unstack(x, **self.attrs)
self.fetch_list = [x.name for x in out]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
class TestCase1(TestBase):
def set_op_attrs(self):
self.attrs = {
"axis": 2,
}
class TestCase2(TestBase):
def set_op_attrs(self):
self.attrs = {
"axis": 0,
}
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
data_x = np.random.uniform(size=[4, 5, 6])
data_y = np.random.uniform(size=[4, 5, 6])
self.feed_fp32 = {
"in_0": data_x.astype(np.float32),
"in_1": data_y.astype(np.float32)
}
self.feed_fp16 = {
"in_0": data_x.astype(np.float16),
"in_1": data_y.astype(np.float16)
}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
y = paddle.static.data(name=self.feed_list[1],
shape=self.feed_shape[1],
dtype='float32')
out = paddle.where(x > 1, x, y)
self.fetch_list = [out.name]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_training()
self.set_data_feed()
self.set_feed_attr()
self.set_op_attrs()
def set_data_feed(self):
data = np.random.uniform(size=[1, 255, 13, 13])
self.feed_fp32 = {"in_0": data.astype(np.float32)}
self.feed_fp16 = {"in_0": data.astype(np.float16)}
def set_feed_attr(self):
self.feed_shape = [x.shape for x in self.feed_fp32.values()]
self.feed_list = list(self.feed_fp32.keys())
self.feed_dtype = [x.dtype for x in self.feed_fp32.values()]
def set_op_attrs(self):
self.attrs = {
"class_num": 80,
"anchors": [10, 13, 16, 30, 33, 23],
"conf_thresh": 0.01,
"downsample_ratio": 32
}
@IPUOpTest.static_graph
def build_model(self):
x = paddle.static.data(name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
attrs = {
'name': 'img_size',
'shape': [1, 2],
'dtype': 'int32',
'value': 6,
}
img_size = paddle.fluid.layers.fill_constant(**attrs)
out = paddle.fluid.layers.yolo_box(x=x, img_size=img_size, **self.attrs)
self.fetch_list = [x.name for x in out]
def run_model(self, exec_mode):
self.run_op_test(exec_mode)
def test(self):
for m in IPUOpTest.ExecutionMode:
if not self.skip_mode(m):
self.build_model()
self.run_model(m)
self.check()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册