Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5424a698
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5424a698
编写于
8月 17, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine gru op unit test
上级
6f78fd7d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
104 addition
and
103 deletion
+104
-103
python/paddle/fluid/tests/unittests/test_gru_op.py
python/paddle/fluid/tests/unittests/test_gru_op.py
+104
-103
未找到文件。
python/paddle/fluid/tests/unittests/test_gru_op.py
浏览文件 @
5424a698
...
@@ -19,22 +19,19 @@ import numpy as np
...
@@ -19,22 +19,19 @@ import numpy as np
import
math
import
math
import
functools
import
functools
from
op_test
import
OpTest
from
op_test
import
OpTest
from
test_lstm_op
import
identity
,
sigmoid
,
tanh
,
relu
from
test_lstm_op
import
ACTIVATION
class
TestGRUOp
(
OpTest
):
def
gru
(
lod
=
[[
2
,
4
,
3
]]
input
,
# T x 3D
batch_size
=
sum
(
lod
[
0
])
lod
,
# 1 x N
frame_size
=
5
h0
,
# N x D
activate
=
{
weight
,
# D x 3D
'identity'
:
identity
,
bias
,
# 1 x 3D
'sigmoid'
:
sigmoid
,
is_reverse
,
'tanh'
:
tanh
,
act_state
,
'relu'
:
relu
act_gate
):
}
def
_seq_to_batch
(
lod
,
is_reverse
):
@
staticmethod
def
seq_to_batch
(
lod
,
is_reverse
):
idx_in_seq_list
=
[]
idx_in_seq_list
=
[]
seq_lens
=
lod
[
0
]
seq_lens
=
lod
[
0
]
seq_starts
=
[
0
]
seq_starts
=
[
0
]
...
@@ -56,121 +53,125 @@ class TestGRUOp(OpTest):
...
@@ -56,121 +53,125 @@ class TestGRUOp(OpTest):
idx_in_seq_list
.
append
(
idx_in_seq
)
idx_in_seq_list
.
append
(
idx_in_seq
)
return
idx_in_seq_list
,
sorted_seqs
return
idx_in_seq_list
,
sorted_seqs
def
gru_step
(
self
,
x
,
h_p
,
w
,
b
):
def
_step
(
x
,
h_p
,
w
,
b
,
act_state
,
act_gate
):
batch_size
=
x
.
shape
[
0
]
T
=
x
.
shape
[
0
]
frame_size
=
w
.
shape
[
0
]
D
=
w
.
shape
[
0
]
g
=
x
+
np
.
tile
(
b
,
(
batch_size
,
1
))
g
=
x
+
np
.
tile
(
b
,
(
T
,
1
))
w_u_r
=
w
.
flatten
()[:
frame_size
*
frame_size
*
2
].
reshape
(
w_u_r
=
w
.
flatten
()[:
D
*
D
*
2
].
reshape
((
D
,
D
*
2
))
(
frame_size
,
frame_size
*
2
))
u_r
=
act_gate
(
np
.
dot
(
h_p
,
w_u_r
)
+
g
[:,
:
D
*
2
])
u_r
=
self
.
activate
[
self
.
attrs
[
'gate_activation'
]](
np
.
dot
(
u
=
u_r
[:,
:
D
]
h_p
,
w_u_r
)
+
g
[:,
:
frame_size
*
2
])
r
=
u_r
[:,
D
:
D
*
2
]
u
=
u_r
[:,
:
frame_size
]
r
=
u_r
[:,
frame_size
:
frame_size
*
2
]
r_h_p
=
r
*
h_p
r_h_p
=
r
*
h_p
w_c
=
w
.
flatten
()[
frame_size
*
frame_size
*
2
:].
reshape
(
w_c
=
w
.
flatten
()[
D
*
D
*
2
:].
reshape
((
D
,
D
))
(
frame_size
,
frame_size
))
c
=
act_state
(
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
D
*
2
:])
c
=
self
.
activate
[
self
.
attrs
[
'activation'
]](
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
frame_size
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
c
+
(
1
-
u
)
*
h_p
h
=
u
*
c
+
(
1
-
u
)
*
h_p
return
g
,
r_h_p
,
h
return
g
,
r_h_p
,
h
def
gru
(
self
):
T
=
sum
(
lod
[
0
])
input
,
lod
=
self
.
inputs
[
'Input'
]
N
=
len
(
lod
[
0
])
w
=
self
.
inputs
[
'Weight'
]
D
=
weight
.
shape
[
0
]
b
=
self
.
inputs
[
'Bias'
]
if
'Bias'
in
self
.
inputs
else
np
.
zeros
(
batch_gate
=
np
.
zeros
((
T
,
3
*
D
),
dtype
=
'float64'
)
(
1
,
self
.
frame_size
*
3
))
batch_reset_hidden_prev
=
np
.
zeros
((
T
,
D
),
dtype
=
'float64'
)
batch_gate
=
self
.
outputs
[
'BatchGate'
]
batch_hidden
=
np
.
zeros
((
T
,
D
),
dtype
=
'float64'
)
batch_reset_hidden_prev
=
self
.
outputs
[
'BatchResetHiddenPrev'
]
hidden
=
np
.
zeros
((
T
,
D
),
dtype
=
'float64'
)
batch_hidden
=
self
.
outputs
[
'BatchHidden'
]
hidden
=
self
.
outputs
[
'Hidden'
]
idx_in_seq_list
,
sorted_seqs
=
_seq_to_batch
(
lod
,
is_reverse
)
idx_in_seq_list
=
self
.
idx_in_seq_list
h_p
=
h0
[
sorted_seqs
]
h_p
=
self
.
inputs
[
'H0'
][
max_seq_len
=
len
(
idx_in_seq_list
)
self
.
sorted_seqs
]
if
'H0'
in
self
.
inputs
else
np
.
zeros
(
assert
len
(
idx_in_seq_list
[
0
])
==
N
(
len
(
idx_in_seq_list
[
0
]),
self
.
frame_size
))
end_idx
=
0
num_batch
=
len
(
idx_in_seq_list
)
for
batch_idx
in
range
(
max_seq_len
):
end_idx
=
0
x
=
input
[
idx_in_seq_list
[
batch_idx
]]
for
batch_idx
in
range
(
num_batch
):
g
,
r_h_p
,
h
=
_step
(
x
,
h_p
,
weight
,
bias
,
act_state
,
act_gate
)
x
=
input
[
idx_in_seq_list
[
batch_idx
]]
if
batch_idx
<
(
max_seq_len
-
1
):
g
,
r_h_p
,
h
=
self
.
gru_step
(
x
,
h_p
,
w
,
b
)
h_p
=
h
[:
len
(
idx_in_seq_list
[
batch_idx
+
1
])]
if
batch_idx
<
(
num_batch
-
1
):
start_idx
=
end_idx
h_p
=
h
[:
len
(
idx_in_seq_list
[
batch_idx
+
1
])]
end_idx
=
start_idx
+
len
(
idx_in_seq_list
[
batch_idx
])
start_idx
=
end_idx
batch_gate
[
start_idx
:
end_idx
]
=
g
end_idx
=
start_idx
+
len
(
idx_in_seq_list
[
batch_idx
])
batch_reset_hidden_prev
[
start_idx
:
end_idx
]
=
r_h_p
batch_gate
[
start_idx
:
end_idx
]
=
g
batch_hidden
[
start_idx
:
end_idx
]
=
h
batch_reset_hidden_prev
[
start_idx
:
end_idx
]
=
r_h_p
hidden
[
idx_in_seq_list
[
batch_idx
]]
=
h
batch_hidden
[
start_idx
:
end_idx
]
=
h
return
batch_gate
,
batch_reset_hidden_prev
,
batch_hidden
,
hidden
hidden
[
idx_in_seq_list
[
batch_idx
]]
=
h
return
batch_gate
,
batch_reset_hidden_prev
,
hidden
def
set_data
(
self
):
lod
=
self
.
lod
self
.
idx_in_seq_list
,
self
.
sorted_seqs
=
self
.
seq_to_batch
(
lod
,
self
.
is_reverse
)
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
input
=
np
.
random
.
rand
(
batch_size
,
frame_size
*
3
).
astype
(
'float64'
)
h0
=
np
.
random
.
rand
(
len
(
self
.
idx_in_seq_list
[
0
]),
frame_size
).
astype
(
'float64'
)
weight
=
np
.
random
.
rand
(
frame_size
,
frame_size
*
3
).
astype
(
'float64'
)
bias
=
np
.
random
.
rand
(
1
,
frame_size
*
3
).
astype
(
'float64'
)
self
.
inputs
=
{
'Input'
:
(
input
,
lod
),
'H0'
:
h0
,
'Weight'
:
weight
,
'Bias'
:
bias
}
self
.
outputs
=
{
'BatchGate'
:
np
.
zeros
(
(
batch_size
,
frame_size
*
3
),
dtype
=
'float64'
),
'BatchResetHiddenPrev'
:
np
.
zeros
(
(
batch_size
,
frame_size
),
dtype
=
'float64'
),
'BatchHidden'
:
np
.
zeros
(
(
batch_size
,
frame_size
),
dtype
=
'float64'
),
'Hidden'
:
np
.
zeros
(
(
batch_size
,
frame_size
),
dtype
=
'float64'
)
}
class
TestGRUOp
(
OpTest
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
is_reverse
=
False
pass
self
.
attrs
=
{
'activation'
:
'tanh'
,
'gate_activation'
:
'sigmoid'
,
'is_reverse'
:
self
.
is_reverse
}
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"gru"
self
.
op_type
=
"gru"
self
.
lod
=
[[
2
,
4
,
3
]]
self
.
D
=
5
self
.
is_reverse
=
False
self
.
with_h0
=
True
self
.
with_bias
=
True
self
.
act_state
=
'tanh'
self
.
act_gate
=
'sigmoid'
self
.
set_confs
()
self
.
set_confs
()
self
.
set_data
()
self
.
gru
()
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
input
=
np
.
random
.
rand
(
T
,
3
*
self
.
D
).
astype
(
'float64'
)
weight
=
np
.
random
.
rand
(
self
.
D
,
3
*
self
.
D
).
astype
(
'float64'
)
bias
=
np
.
random
.
rand
(
1
,
3
*
self
.
D
).
astype
(
'float64'
)
if
self
.
with_bias
else
np
.
zeros
(
(
1
,
3
*
self
.
D
),
dtype
=
'float64'
)
h0
=
np
.
random
.
rand
(
N
,
self
.
D
).
astype
(
'float64'
)
if
self
.
with_h0
else
np
.
zeros
(
(
N
,
self
.
D
),
dtype
=
'float64'
)
batch_gate
,
batch_reset_hidden_prev
,
batch_hidden
,
hidden
=
gru
(
input
,
self
.
lod
,
h0
,
weight
,
bias
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_state
],
ACTIVATION
[
self
.
act_gate
])
self
.
inputs
=
{
'Input'
:
(
input
,
self
.
lod
),
'Weight'
:
weight
}
if
self
.
with_bias
:
self
.
inputs
[
'Bias'
]
=
bias
if
self
.
with_h0
:
self
.
inputs
[
'H0'
]
=
h0
self
.
outputs
=
{
'Hidden'
:
(
hidden
,
self
.
lod
),
'BatchGate'
:
batch_gate
,
'BatchResetHiddenPrev'
:
batch_reset_hidden_prev
,
'BatchHidden'
:
batch_hidden
,
}
self
.
attrs
=
{
'activation'
:
self
.
act_state
,
'gate_activation'
:
self
.
act_gate
,
'is_reverse'
:
self
.
is_reverse
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
atol
=
1e-8
)
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
class
TestGRUOpNoInitial
(
TestGRUOp
):
class
TestGRUOpNoInitial
(
TestGRUOp
):
def
set_data
(
self
):
def
set_confs
(
self
):
super
(
TestGRUOpNoInitial
,
self
).
set_data
()
self
.
with_h0
=
False
self
.
inputs
.
pop
(
'H0'
)
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
self
.
check_grad
([
'Input'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
class
TestGRUOpNoBias
(
TestGRUOp
):
def
set_confs
(
self
):
self
.
with_bias
=
False
def
test_check_grad
(
self
):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
],
[
'Hidden'
])
class
TestGRUOpReverse
(
TestGRUOp
):
class
TestGRUOpReverse
(
TestGRUOp
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
is_reverse
=
True
self
.
is_reverse
=
True
self
.
attrs
=
{
'activation'
:
'tanh'
,
'gate_activation'
:
'sigmoid'
,
'is_reverse'
:
self
.
is_reverse
}
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录