未验证 提交 5356f2e0 编写于 作者: C cyberslack_lee 提交者: GitHub

[xdoctest] reformat example code with google style in No.150-160 (#56178)

* test=docs_preview

* test=docs_preview
上级 dcfe2f1a
...@@ -59,13 +59,13 @@ class WMT16(Dataset): ...@@ -59,13 +59,13 @@ class WMT16(Dataset):
Args: Args:
data_file(str): path to data tar file, can be set None if data_file(str): path to data tar file, can be set None if
:attr:`download` is True. Default None :attr:`download` is True. Default None.
mode(str): 'train', 'test' or 'val'. Default 'train' mode(str): 'train', 'test' or 'val'. Default 'train'.
src_dict_size(int): word dictionary size for source language word. Default -1. src_dict_size(int): word dictionary size for source language word. Default -1.
trg_dict_size(int): word dictionary size for target language word. Default -1. trg_dict_size(int): word dictionary size for target language word. Default -1.
lang(str): source language, 'en' or 'de'. Default 'en'. lang(str): source language, 'en' or 'de'. Default 'en'.
download(bool): whether to download dataset automatically if download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True :attr:`data_file` is not set. Default True.
Returns: Returns:
Dataset: Instance of WMT16 dataset. The instance of dataset has 3 fields: Dataset: Instance of WMT16 dataset. The instance of dataset has 3 fields:
...@@ -77,30 +77,37 @@ class WMT16(Dataset): ...@@ -77,30 +77,37 @@ class WMT16(Dataset):
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.text.datasets import WMT16 >>> from paddle.text.datasets import WMT16
class SimpleNet(paddle.nn.Layer): >>> class SimpleNet(paddle.nn.Layer):
def __init__(self): ... def __init__(self):
super().__init__() ... super().__init__()
...
def forward(self, src_ids, trg_ids, trg_ids_next): ... def forward(self, src_ids, trg_ids, trg_ids_next):
return paddle.sum(src_ids), paddle.sum(trg_ids), paddle.sum(trg_ids_next) ... return paddle.sum(src_ids), paddle.sum(trg_ids), paddle.sum(trg_ids_next)
paddle.disable_static() >>> wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50)
wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50) >>> for i in range(10):
... src_ids, trg_ids, trg_ids_next = wmt16[i]
for i in range(10): ... src_ids = paddle.to_tensor(src_ids)
src_ids, trg_ids, trg_ids_next = wmt16[i] ... trg_ids = paddle.to_tensor(trg_ids)
src_ids = paddle.to_tensor(src_ids) ... trg_ids_next = paddle.to_tensor(trg_ids_next)
trg_ids = paddle.to_tensor(trg_ids) ...
trg_ids_next = paddle.to_tensor(trg_ids_next) ... model = SimpleNet()
... src_ids, trg_ids, trg_ids_next = model(src_ids, trg_ids, trg_ids_next)
model = SimpleNet() ... print(src_ids.item(), trg_ids.item(), trg_ids_next.item())
src_ids, trg_ids, trg_ids_next = model(src_ids, trg_ids, trg_ids_next) 89 32 33
print(src_ids.numpy(), trg_ids.numpy(), trg_ids_next.numpy()) 79 18 19
55 26 27
147 36 37
106 22 23
135 50 51
54 43 44
217 30 31
146 51 52
55 24 25
""" """
def __init__( def __init__(
...@@ -257,9 +264,9 @@ class WMT16(Dataset): ...@@ -257,9 +264,9 @@ class WMT16(Dataset):
.. code-block:: python .. code-block:: python
from paddle.text.datasets import WMT16 >>> from paddle.text.datasets import WMT16
wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50) >>> wmt16 = WMT16(mode='train', src_dict_size=50, trg_dict_size=50)
en_dict = wmt16.get_dict('en') >>> en_dict = wmt16.get_dict('en')
""" """
dict_size = ( dict_size = (
......
...@@ -42,20 +42,27 @@ def viterbi_decode( ...@@ -42,20 +42,27 @@ def viterbi_decode(
Returns: Returns:
scores(Tensor): The output tensor containing the score for the Viterbi sequence. The shape is [batch_size] scores(Tensor): The output tensor containing the score for the Viterbi sequence. The shape is [batch_size]
and the data type is float32 or float64. and the data type is float32 or float64.
paths(Tensor): The output tensor containing the highest scoring tag indices. The shape is [batch_size, sequence_length] paths(Tensor): The output tensor containing the highest scoring tag indices. The shape is [batch_size, sequence_length]
and the data type is int64. and the data type is int64.
Example: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
paddle.seed(102) >>> paddle.seed(2023)
batch_size, seq_len, num_tags = 2, 4, 3 >>> batch_size, seq_len, num_tags = 2, 4, 3
emission = paddle.rand((batch_size, seq_len, num_tags), dtype='float32') >>> emission = paddle.rand((batch_size, seq_len, num_tags), dtype='float32')
length = paddle.randint(1, seq_len + 1, [batch_size]) >>> length = paddle.randint(1, seq_len + 1, [batch_size])
tags = paddle.randint(0, num_tags, [batch_size, seq_len]) >>> tags = paddle.randint(0, num_tags, [batch_size, seq_len])
transition = paddle.rand((num_tags, num_tags), dtype='float32') >>> transition = paddle.rand((num_tags, num_tags), dtype='float32')
scores, path = paddle.text.viterbi_decode(emission, transition, length, False) # scores: [3.37089300, 1.56825531], path: [[1, 0, 0], [1, 1, 0]] >>> scores, path = paddle.text.viterbi_decode(emission, transition, length, False)
>>> print(scores)
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[2.57385254, 2.04533720])
>>> print(path)
Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 0],
[1, 1]])
""" """
if in_dygraph_mode(): if in_dygraph_mode():
return _C_ops.viterbi_decode( return _C_ops.viterbi_decode(
...@@ -95,7 +102,7 @@ class ViterbiDecoder(Layer): ...@@ -95,7 +102,7 @@ class ViterbiDecoder(Layer):
Decode the highest scoring sequence of tags computed by transitions and potentials and get the viterbi path. Decode the highest scoring sequence of tags computed by transitions and potentials and get the viterbi path.
Args: Args:
transitions (`Tensor`): The transition matrix. Its dtype is float32 and has a shape of `[num_tags, num_tags]`. transitions (`Tensor`): The transition matrix. Its dtype is float32 and has a shape of `[num_tags, num_tags]`.
include_bos_eos_tag (`bool`, optional): If set to True, the last row and the last column of transitions will be considered include_bos_eos_tag (`bool`, optional): If set to True, the last row and the last column of transitions will be considered
as start tag, the second to last row and the second to last column of transitions will be considered as stop tag. Defaults to ``True``. as start tag, the second to last row and the second to last column of transitions will be considered as stop tag. Defaults to ``True``.
name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please
...@@ -104,27 +111,34 @@ class ViterbiDecoder(Layer): ...@@ -104,27 +111,34 @@ class ViterbiDecoder(Layer):
Shape: Shape:
potentials (Tensor): The input tensor of unary emission. This is a 3-D tensor with shape of potentials (Tensor): The input tensor of unary emission. This is a 3-D tensor with shape of
[batch_size, sequence_length, num_tags]. The data type is float32 or float64. [batch_size, sequence_length, num_tags]. The data type is float32 or float64.
lengths (Tensor): The input tensor of length of each sequence. This is a 1-D tensor with shape of lengths (Tensor): The input tensor of length of each sequence. This is a 1-D tensor with shape of
[batch_size]. The data type is int64. [batch_size]. The data type is int64.
Returns: Returns:
scores(Tensor): The output tensor containing the score for the Viterbi sequence. The shape is [batch_size] scores(Tensor): The output tensor containing the score for the Viterbi sequence. The shape is [batch_size]
and the data type is float32 or float64. and the data type is float32 or float64.
paths(Tensor): The output tensor containing the highest scoring tag indices. The shape is [batch_size, sequence_length] paths(Tensor): The output tensor containing the highest scoring tag indices. The shape is [batch_size, sequence_length]
and the data type is int64. and the data type is int64.
Example: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
paddle.seed(102) >>> paddle.seed(2023)
batch_size, seq_len, num_tags = 2, 4, 3 >>> batch_size, seq_len, num_tags = 2, 4, 3
emission = paddle.rand((batch_size, seq_len, num_tags), dtype='float32') >>> emission = paddle.rand((batch_size, seq_len, num_tags), dtype='float32')
length = paddle.randint(1, seq_len + 1, [batch_size]) >>> length = paddle.randint(1, seq_len + 1, [batch_size])
tags = paddle.randint(0, num_tags, [batch_size, seq_len]) >>> tags = paddle.randint(0, num_tags, [batch_size, seq_len])
transition = paddle.rand((num_tags, num_tags), dtype='float32') >>> transition = paddle.rand((num_tags, num_tags), dtype='float32')
decoder = paddle.text.ViterbiDecoder(transition, include_bos_eos_tag=False) >>> decoder = paddle.text.ViterbiDecoder(transition, include_bos_eos_tag=False)
scores, path = decoder(emission, length) # scores: [3.37089300, 1.56825531], path: [[1, 0, 0], [1, 1, 0]] >>> scores, path = decoder(emission, length)
>>> print(scores)
Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
[2.57385254, 2.04533720])
>>> print(path)
Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 0],
[1, 1]])
""" """
def __init__(self, transitions, include_bos_eos_tag=True, name=None): def __init__(self, transitions, include_bos_eos_tag=True, name=None):
......
...@@ -21,13 +21,13 @@ from paddle import nn ...@@ -21,13 +21,13 @@ from paddle import nn
def _make_divisible(v, divisor=8, min_value=None): def _make_divisible(v, divisor=8, min_value=None):
""" """
This function ensures that all layers have a channel number that is divisible by divisor This function ensures that all layers have a channel number that is divisible by divisor.
You can also see at https://github.com/keras-team/keras/blob/8ecef127f70db723c158dbe9ed3268b3d610ab55/keras/applications/mobilenet_v2.py#L505 You can also see at https://github.com/keras-team/keras/blob/8ecef127f70db723c158dbe9ed3268b3d610ab55/keras/applications/mobilenet_v2.py#L505
Args: Args:
divisor (int): The divisor for number of channels. Default: 8. divisor (int, optional): The divisor for number of channels. Default: 8.
min_value (int, optional): The minimum value of number of channels, if it is None, min_value (int, optional): The minimum value of number of channels, if it is None,
the default is divisor. Default: None. the default is divisor. Default: None.
""" """
if min_value is None: if min_value is None:
min_value = divisor min_value = divisor
...@@ -50,22 +50,25 @@ class IntermediateLayerGetter(nn.LayerDict): ...@@ -50,22 +50,25 @@ class IntermediateLayerGetter(nn.LayerDict):
So if `model` is passed, `model.feature1` can be returned, but not `model.feature1.layer2`. So if `model` is passed, `model.feature1` can be returned, but not `model.feature1.layer2`.
Args: Args:
model (nn.Layer): model on which we will extract the features
return_layers (Dict[name, new_name]): a dict containing the names of the layers for model (nn.Layer): Model on which we will extract the features.
return_layers (Dict[name, new_name]): A dict containing the names of the layers for
which the activations will be returned as the key of the dict, and the value of the which the activations will be returned as the key of the dict, and the value of the
dict is the name of the returned activation (which the user can specify). dict is the name of the returned activation (which the user can specify).
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
m = paddle.vision.models.resnet18(pretrained=False) >>> m = paddle.vision.models.resnet18(pretrained=False)
# extract layer1 and layer3, giving as names `feat1` and feat2`
new_m = paddle.vision.models._utils.IntermediateLayerGetter(m, >>> # extract layer1 and layer3, giving as names `feat1` and feat2`
{'layer1': 'feat1', 'layer3': 'feat2'}) >>> new_m = paddle.vision.models._utils.IntermediateLayerGetter(m,
out = new_m(paddle.rand([1, 3, 224, 224])) ... {'layer1': 'feat1', 'layer3': 'feat2'})
print([(k, v.shape) for k, v in out.items()]) >>> out = new_m(paddle.rand([1, 3, 224, 224]))
# [('feat1', [1, 64, 56, 56]), ('feat2', [1, 256, 14, 14])] >>> print([(k, v.shape) for k, v in out.items()])
[('feat1', [1, 64, 56, 56]), ('feat2', [1, 256, 14, 14])]
""" """
__annotations__ = { __annotations__ = {
......
...@@ -75,7 +75,7 @@ class AlexNet(nn.Layer): ...@@ -75,7 +75,7 @@ class AlexNet(nn.Layer):
Args: Args:
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
Returns: Returns:
:ref:`api_paddle_nn_Layer`. An instance of AlexNet model. :ref:`api_paddle_nn_Layer`. An instance of AlexNet model.
...@@ -83,16 +83,14 @@ class AlexNet(nn.Layer): ...@@ -83,16 +83,14 @@ class AlexNet(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import AlexNet >>> from paddle.vision.models import AlexNet
alexnet = AlexNet() >>> alexnet = AlexNet()
>>> x = paddle.rand([1, 3, 224, 224])
x = paddle.rand([1, 3, 224, 224]) >>> out = alexnet(x)
out = alexnet(x) >>> print(out.shape)
[1, 1000]
print(out.shape)
# [1, 1000]
""" """
def __init__(self, num_classes=1000): def __init__(self, num_classes=1000):
...@@ -197,7 +195,7 @@ def alexnet(pretrained=False, **kwargs): ...@@ -197,7 +195,7 @@ def alexnet(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`AlexNet <api_paddle_vision_AlexNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`AlexNet <api_paddle_vision_AlexNet>`.
Returns: Returns:
...@@ -206,19 +204,19 @@ def alexnet(pretrained=False, **kwargs): ...@@ -206,19 +204,19 @@ def alexnet(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import alexnet >>> from paddle.vision.models import alexnet
# build model >>> # Build model
model = alexnet() >>> model = alexnet()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = alexnet(pretrained=True) >>> # model = alexnet(pretrained=True)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
return _alexnet('alexnet', pretrained, **kwargs) return _alexnet('alexnet', pretrained, **kwargs)
...@@ -209,7 +209,7 @@ class DenseNet(nn.Layer): ...@@ -209,7 +209,7 @@ class DenseNet(nn.Layer):
bn_size (int, optional): Expansion of growth rate in the middle layer. Default: 4. bn_size (int, optional): Expansion of growth rate in the middle layer. Default: 4.
dropout (float, optional): Dropout rate. Default: :math:`0.0`. dropout (float, optional): Dropout rate. Default: :math:`0.0`.
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -218,17 +218,17 @@ class DenseNet(nn.Layer): ...@@ -218,17 +218,17 @@ class DenseNet(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import DenseNet >>> from paddle.vision.models import DenseNet
# build model >>> # Build model
densenet = DenseNet() >>> densenet = DenseNet()
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = densenet(x) >>> out = densenet(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
def __init__( def __init__(
...@@ -360,7 +360,7 @@ def densenet121(pretrained=False, **kwargs): ...@@ -360,7 +360,7 @@ def densenet121(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`.
Returns: Returns:
...@@ -369,20 +369,20 @@ def densenet121(pretrained=False, **kwargs): ...@@ -369,20 +369,20 @@ def densenet121(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import densenet121 >>> from paddle.vision.models import densenet121
# build model >>> # Build model
model = densenet121() >>> model = densenet121()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = densenet121(pretrained=True) >>> # model = densenet121(pretrained=True)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
return _densenet('densenet121', 121, pretrained, **kwargs) return _densenet('densenet121', 121, pretrained, **kwargs)
...@@ -393,7 +393,7 @@ def densenet161(pretrained=False, **kwargs): ...@@ -393,7 +393,7 @@ def densenet161(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`.
Returns: Returns:
...@@ -402,13 +402,20 @@ def densenet161(pretrained=False, **kwargs): ...@@ -402,13 +402,20 @@ def densenet161(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
from paddle.vision.models import densenet161 >>> import paddle
>>> from paddle.vision.models import densenet161
# build model >>> # Build model
model = densenet161() >>> model = densenet161()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = densenet161(pretrained=True) >>> # model = densenet161(pretrained=True)
>>> x = paddle.rand([1, 3, 224, 224])
>>> out = model(x)
>>> print(out.shape)
[1, 1000]
""" """
return _densenet('densenet161', 161, pretrained, **kwargs) return _densenet('densenet161', 161, pretrained, **kwargs)
...@@ -419,7 +426,7 @@ def densenet169(pretrained=False, **kwargs): ...@@ -419,7 +426,7 @@ def densenet169(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`.
Returns: Returns:
...@@ -428,20 +435,20 @@ def densenet169(pretrained=False, **kwargs): ...@@ -428,20 +435,20 @@ def densenet169(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import densenet169 >>> from paddle.vision.models import densenet169
# build model >>> # Build model
model = densenet169() >>> model = densenet169()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = densenet169(pretrained=True) >>> # model = densenet169(pretrained=True)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
return _densenet('densenet169', 169, pretrained, **kwargs) return _densenet('densenet169', 169, pretrained, **kwargs)
...@@ -452,7 +459,7 @@ def densenet201(pretrained=False, **kwargs): ...@@ -452,7 +459,7 @@ def densenet201(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`.
Returns: Returns:
...@@ -461,19 +468,19 @@ def densenet201(pretrained=False, **kwargs): ...@@ -461,19 +468,19 @@ def densenet201(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import densenet201 >>> from paddle.vision.models import densenet201
# build model >>> # Build model
model = densenet201() >>> model = densenet201()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = densenet201(pretrained=True) >>> # model = densenet201(pretrained=True)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
return _densenet('densenet201', 201, pretrained, **kwargs) return _densenet('densenet201', 201, pretrained, **kwargs)
...@@ -484,7 +491,7 @@ def densenet264(pretrained=False, **kwargs): ...@@ -484,7 +491,7 @@ def densenet264(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`DenseNet <api_paddle_vision_DenseNet>`.
Returns: Returns:
...@@ -493,19 +500,19 @@ def densenet264(pretrained=False, **kwargs): ...@@ -493,19 +500,19 @@ def densenet264(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import densenet264 >>> from paddle.vision.models import densenet264
# build model >>> # Build model
model = densenet264() >>> model = densenet264()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = densenet264(pretrained=True) >>> # model = densenet264(pretrained=True)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
return _densenet('densenet264', 264, pretrained, **kwargs) return _densenet('densenet264', 264, pretrained, **kwargs)
...@@ -110,7 +110,7 @@ class GoogLeNet(nn.Layer): ...@@ -110,7 +110,7 @@ class GoogLeNet(nn.Layer):
Args: Args:
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -119,17 +119,17 @@ class GoogLeNet(nn.Layer): ...@@ -119,17 +119,17 @@ class GoogLeNet(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import GoogLeNet >>> from paddle.vision.models import GoogLeNet
# build model >>> # Build model
model = GoogLeNet() >>> model = GoogLeNet()
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out, out1, out2 = model(x) >>> out, out1, out2 = model(x)
print(out.shape, out1.shape, out2.shape) >>> print(out.shape, out1.shape, out2.shape)
# [1, 1000] [1, 1000] [1, 1000] [1, 1000] [1, 1000] [1, 1000]
""" """
def __init__(self, num_classes=1000, with_pool=True): def __init__(self, num_classes=1000, with_pool=True):
...@@ -236,7 +236,7 @@ def googlenet(pretrained=False, **kwargs): ...@@ -236,7 +236,7 @@ def googlenet(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`GoogLeNet <api_paddle_vision_GoogLeNet>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`GoogLeNet <api_paddle_vision_GoogLeNet>`.
Returns: Returns:
...@@ -245,20 +245,20 @@ def googlenet(pretrained=False, **kwargs): ...@@ -245,20 +245,20 @@ def googlenet(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import googlenet >>> from paddle.vision.models import googlenet
# build model >>> # Build model
model = googlenet() >>> model = googlenet()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = googlenet(pretrained=True) >>> # model = googlenet(pretrained=True)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out, out1, out2 = model(x) >>> out, out1, out2 = model(x)
print(out.shape, out1.shape, out2.shape) >>> print(out.shape, out1.shape, out2.shape)
# [1, 1000] [1, 1000] [1, 1000] [1, 1000] [1, 1000] [1, 1000]
""" """
model = GoogLeNet(**kwargs) model = GoogLeNet(**kwargs)
arch = "googlenet" arch = "googlenet"
......
...@@ -491,7 +491,7 @@ class InceptionV3(nn.Layer): ...@@ -491,7 +491,7 @@ class InceptionV3(nn.Layer):
Args: Args:
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -500,16 +500,16 @@ class InceptionV3(nn.Layer): ...@@ -500,16 +500,16 @@ class InceptionV3(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import InceptionV3 >>> from paddle.vision.models import InceptionV3
inception_v3 = InceptionV3() >>> inception_v3 = InceptionV3()
x = paddle.rand([1, 3, 299, 299]) >>> x = paddle.rand([1, 3, 299, 299])
out = inception_v3(x) >>> out = inception_v3(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
def __init__(self, num_classes=1000, with_pool=True): def __init__(self, num_classes=1000, with_pool=True):
...@@ -591,7 +591,7 @@ def inception_v3(pretrained=False, **kwargs): ...@@ -591,7 +591,7 @@ def inception_v3(pretrained=False, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`InceptionV3 <api_paddle_vision_InceptionV3>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`InceptionV3 <api_paddle_vision_InceptionV3>`.
Returns: Returns:
...@@ -600,20 +600,20 @@ def inception_v3(pretrained=False, **kwargs): ...@@ -600,20 +600,20 @@ def inception_v3(pretrained=False, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import inception_v3 >>> from paddle.vision.models import inception_v3
# build model >>> # Build model
model = inception_v3() >>> model = inception_v3()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = inception_v3(pretrained=True) >>> # model = inception_v3(pretrained=True)
x = paddle.rand([1, 3, 299, 299]) >>> x = paddle.rand([1, 3, 299, 299])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
model = InceptionV3(**kwargs) model = InceptionV3(**kwargs)
arch = "inception_v3" arch = "inception_v3"
......
...@@ -24,7 +24,7 @@ class LeNet(nn.Layer): ...@@ -24,7 +24,7 @@ class LeNet(nn.Layer):
Args: Args:
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 10. will not be defined. Default: 10.
Returns: Returns:
:ref:`api_paddle_nn_Layer`. An instance of LeNet model. :ref:`api_paddle_nn_Layer`. An instance of LeNet model.
...@@ -32,16 +32,16 @@ class LeNet(nn.Layer): ...@@ -32,16 +32,16 @@ class LeNet(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import LeNet >>> from paddle.vision.models import LeNet
model = LeNet() >>> model = LeNet()
x = paddle.rand([1, 1, 28, 28]) >>> x = paddle.rand([1, 1, 28, 28])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 10] [1, 10]
""" """
def __init__(self, num_classes=10): def __init__(self, num_classes=10):
......
...@@ -70,7 +70,7 @@ class MobileNetV1(nn.Layer): ...@@ -70,7 +70,7 @@ class MobileNetV1(nn.Layer):
Args: Args:
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -79,16 +79,16 @@ class MobileNetV1(nn.Layer): ...@@ -79,16 +79,16 @@ class MobileNetV1(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import MobileNetV1 >>> from paddle.vision.models import MobileNetV1
model = MobileNetV1() >>> model = MobileNetV1()
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
def __init__(self, scale=1.0, num_classes=1000, with_pool=True): def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
...@@ -268,7 +268,7 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs): ...@@ -268,7 +268,7 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs):
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
on ImageNet. Default: False. on ImageNet. Default: False.
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV1 <api_paddle_vision_MobileNetV1>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV1 <api_paddle_vision_MobileNetV1>`.
...@@ -278,23 +278,23 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs): ...@@ -278,23 +278,23 @@ def mobilenet_v1(pretrained=False, scale=1.0, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import mobilenet_v1 >>> from paddle.vision.models import mobilenet_v1
# build model >>> # Build model
model = mobilenet_v1() >>> model = mobilenet_v1()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = mobilenet_v1(pretrained=True) >>> # model = mobilenet_v1(pretrained=True)
# build mobilenet v1 with scale=0.5 >>> # build mobilenet v1 with scale=0.5
model_scale = mobilenet_v1(scale=0.5) >>> model_scale = mobilenet_v1(scale=0.5)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
model = _mobilenet( model = _mobilenet(
'mobilenetv1_' + str(scale), pretrained, scale=scale, **kwargs 'mobilenetv1_' + str(scale), pretrained, scale=scale, **kwargs
......
...@@ -81,7 +81,7 @@ class MobileNetV2(nn.Layer): ...@@ -81,7 +81,7 @@ class MobileNetV2(nn.Layer):
Args: Args:
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -90,16 +90,16 @@ class MobileNetV2(nn.Layer): ...@@ -90,16 +90,16 @@ class MobileNetV2(nn.Layer):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import MobileNetV2 >>> from paddle.vision.models import MobileNetV2
model = MobileNetV2() >>> model = MobileNetV2()
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
def __init__(self, scale=1.0, num_classes=1000, with_pool=True): def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
...@@ -206,8 +206,7 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs): ...@@ -206,8 +206,7 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False.
on ImageNet. Default: False.
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV2 <api_paddle_vision_MobileNetV2>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV2 <api_paddle_vision_MobileNetV2>`.
...@@ -217,23 +216,23 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs): ...@@ -217,23 +216,23 @@ def mobilenet_v2(pretrained=False, scale=1.0, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import mobilenet_v2 >>> from paddle.vision.models import mobilenet_v2
# build model >>> # Build model
model = mobilenet_v2() >>> model = mobilenet_v2()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = mobilenet_v2(pretrained=True) >>> # model = mobilenet_v2(pretrained=True)
# build mobilenet v2 with scale=0.5 >>> # Build mobilenet v2 with scale=0.5
model = mobilenet_v2(scale=0.5) >>> model = mobilenet_v2(scale=0.5)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
model = _mobilenet( model = _mobilenet(
'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs 'mobilenetv2_' + str(scale), pretrained, scale=scale, **kwargs
......
...@@ -41,11 +41,12 @@ class SqueezeExcitation(nn.Layer): ...@@ -41,11 +41,12 @@ class SqueezeExcitation(nn.Layer):
Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3. Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.
This code is based on the torchvision code with modifications. This code is based on the torchvision code with modifications.
You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L127 You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L127
Args: Args:
input_channels (int): Number of channels in the input image input_channels (int): Number of channels in the input image.
squeeze_channels (int): Number of squeeze channels squeeze_channels (int): Number of squeeze channels.
activation (Callable[..., paddle.nn.Layer], optional): ``delta`` activation. Default: ``paddle.nn.ReLU`` activation (Callable[..., paddle.nn.Layer], optional): ``delta`` activation. Default: ``paddle.nn.ReLU``.
scale_activation (Callable[..., paddle.nn.Layer]): ``sigma`` activation. Default: ``paddle.nn.Sigmoid`` scale_activation (Callable[..., paddle.nn.Layer]): ``sigma`` activation. Default: ``paddle.nn.Sigmoid``.
""" """
def __init__( def __init__(
...@@ -190,7 +191,7 @@ class MobileNetV3(nn.Layer): ...@@ -190,7 +191,7 @@ class MobileNetV3(nn.Layer):
last_channel (int): The number of channels on the penultimate layer. last_channel (int): The number of channels on the penultimate layer.
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
""" """
...@@ -280,7 +281,7 @@ class MobileNetV3Small(MobileNetV3): ...@@ -280,7 +281,7 @@ class MobileNetV3Small(MobileNetV3):
Args: Args:
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -289,17 +290,17 @@ class MobileNetV3Small(MobileNetV3): ...@@ -289,17 +290,17 @@ class MobileNetV3Small(MobileNetV3):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import MobileNetV3Small >>> from paddle.vision.models import MobileNetV3Small
# build model >>> # Build model
model = MobileNetV3Small(scale=1.0) >>> model = MobileNetV3Small(scale=1.0)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
def __init__(self, scale=1.0, num_classes=1000, with_pool=True): def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
...@@ -333,7 +334,7 @@ class MobileNetV3Large(MobileNetV3): ...@@ -333,7 +334,7 @@ class MobileNetV3Large(MobileNetV3):
Args: Args:
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
will not be defined. Default: 1000. will not be defined. Default: 1000.
with_pool (bool, optional): Use pool before the last fc layer or not. Default: True. with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
Returns: Returns:
...@@ -342,17 +343,17 @@ class MobileNetV3Large(MobileNetV3): ...@@ -342,17 +343,17 @@ class MobileNetV3Large(MobileNetV3):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import MobileNetV3Large >>> from paddle.vision.models import MobileNetV3Large
# build model >>> # Build model
model = MobileNetV3Large(scale=1.0) >>> model = MobileNetV3Large(scale=1.0)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
def __init__(self, scale=1.0, num_classes=1000, with_pool=True): def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
...@@ -427,8 +428,7 @@ def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs): ...@@ -427,8 +428,7 @@ def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs):
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False.
on ImageNet. Default: False.
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV3Small <api_paddle_vision_MobileNetV3Small>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV3Small <api_paddle_vision_MobileNetV3Small>`.
...@@ -438,23 +438,23 @@ def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs): ...@@ -438,23 +438,23 @@ def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import mobilenet_v3_small >>> from paddle.vision.models import mobilenet_v3_small
# build model >>> # Build model
model = mobilenet_v3_small() >>> model = mobilenet_v3_small()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = mobilenet_v3_small(pretrained=True) >>> # model = mobilenet_v3_small(pretrained=True)
# build mobilenet v3 small model with scale=0.5 >>> # Build mobilenet v3 small model with scale=0.5
model = mobilenet_v3_small(scale=0.5) >>> model = mobilenet_v3_small(scale=0.5)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
model = _mobilenet_v3( model = _mobilenet_v3(
"mobilenet_v3_small", scale=scale, pretrained=pretrained, **kwargs "mobilenet_v3_small", scale=scale, pretrained=pretrained, **kwargs
...@@ -467,8 +467,7 @@ def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs): ...@@ -467,8 +467,7 @@ def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs):
`"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_. `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.
Args: Args:
pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False.
on ImageNet. Default: False.
scale (float, optional): Scale of channels in each layer. Default: 1.0. scale (float, optional): Scale of channels in each layer. Default: 1.0.
**kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV3Large <api_paddle_vision_MobileNetV3Large>`. **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV3Large <api_paddle_vision_MobileNetV3Large>`.
...@@ -478,23 +477,23 @@ def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs): ...@@ -478,23 +477,23 @@ def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs):
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle >>> import paddle
from paddle.vision.models import mobilenet_v3_large >>> from paddle.vision.models import mobilenet_v3_large
# build model >>> # Build model
model = mobilenet_v3_large() >>> model = mobilenet_v3_large()
# build model and load imagenet pretrained weight >>> # Build model and load imagenet pretrained weight
# model = mobilenet_v3_large(pretrained=True) >>> # model = mobilenet_v3_large(pretrained=True)
# build mobilenet v3 large model with scale=0.5 >>> # Build mobilenet v3 large model with scale=0.5
model = mobilenet_v3_large(scale=0.5) >>> model = mobilenet_v3_large(scale=0.5)
x = paddle.rand([1, 3, 224, 224]) >>> x = paddle.rand([1, 3, 224, 224])
out = model(x) >>> out = model(x)
print(out.shape) >>> print(out.shape)
# [1, 1000] [1, 1000]
""" """
model = _mobilenet_v3( model = _mobilenet_v3(
"mobilenet_v3_large", scale=scale, pretrained=pretrained, **kwargs "mobilenet_v3_large", scale=scale, pretrained=pretrained, **kwargs
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册