And the dimension of each time step is block_y * block_x * input.channels.
And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
Args:
Parameters:
input (Variable): The input should be a tensor in NCHW format.
input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
it must contain two integers, (filter_size_H, filter_size_W).
it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
Otherwise, the filter will be a square.
Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
stride(int|tuple): The stride size. If stride is a tuple, it must
stride(int32 | List[int32]): The stride size. If stride is a List, it must
contain two integers, (stride_H, stride_W). Otherwise, the
contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.