Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
522c2bc0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
522c2bc0
编写于
12月 27, 2022
作者:
W
wanghuancoder
提交者:
GitHub
12月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete old dygraph pylayer recompute (#49338)
上级
2bbdc47a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
142 deletion
+0
-142
python/paddle/distributed/fleet/recompute/recompute.py
python/paddle/distributed/fleet/recompute/recompute.py
+0
-142
未找到文件。
python/paddle/distributed/fleet/recompute/recompute.py
浏览文件 @
522c2bc0
...
...
@@ -18,7 +18,6 @@ import weakref
import
paddle
from
paddle
import
framework
from
paddle.autograd
import
PyLayer
from
paddle.autograd.py_layer
import
LegacyPyLayer
from
paddle.distributed.fleet.meta_parallel.parallel_layers.random
import
(
get_rng_state_tracker
,
)
...
...
@@ -67,147 +66,6 @@ def swith_rng_state_tracker(rng_state, tracker):
get_rng_state_tracker
().
set_states_tracker
(
orig_rng_tracker
)
class
LegacyRecomputeFunction
(
LegacyPyLayer
):
@
staticmethod
def
forward
(
ctx
,
run_function
,
preserve_rng_state
,
*
args
):
# store for recomputing
ctx
.
run_function
=
run_function
ctx
.
preserve_rng_state
=
preserve_rng_state
# NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input
# the order of tensors in backward()'s output should be the same as tensors in forward()'s input
# None tensor inputs will be filtered in backward inputs.
# save input for backward
ctx
.
inputs
=
[]
ctx
.
tensor_indices
=
[]
tensor_inputs
=
[]
for
i
,
arg
in
enumerate
(
args
):
if
paddle
.
is_tensor
(
arg
):
tensor_inputs
.
append
(
arg
)
ctx
.
tensor_indices
.
append
(
i
)
ctx
.
inputs
.
append
(
None
)
else
:
ctx
.
inputs
.
append
(
arg
)
ctx
.
save_for_backward
(
*
tensor_inputs
)
# NOTE recompute with restore RNG only support one senario where one process for one cuda gpu.
# one process with multiple gpu and mix-gpu-cpu senarios are not support
if
ctx
.
preserve_rng_state
:
ctx
.
fw_rng_state
=
paddle
.
get_rng_state
()
ctx
.
fwd_rng_state_tracker
=
(
get_rng_state_tracker
().
get_states_tracker
()
)
# TODO support AMP
tracer
=
framework
.
_dygraph_tracer
()
ctx
.
is_fw_autocast
=
(
False
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O0
else
True
)
if
tracer
.
_amp_level
==
core
.
AmpLevel
.
O2
:
ctx
.
amp_level
=
'O2'
elif
tracer
.
_amp_level
in
(
core
.
AmpLevel
.
O1
,
core
.
AmpLevel
.
O0
):
ctx
.
amp_level
=
'O1'
else
:
raise
ValueError
(
"unsupported amp level: {}"
.
format
(
tracer
.
_amp_level
)
)
if
tracer
.
_amp_dtype
==
'float16'
:
ctx
.
amp_dtype
=
'float16'
elif
tracer
.
_amp_dtype
in
(
'bfloat16'
,
'float32'
):
ctx
.
amp_dtype
=
'bfloat16'
else
:
raise
ValueError
(
"unsupported amp dtype: {}"
.
format
(
tracer
.
_amp_dtype
)
)
ctx
.
amp_white_list
,
ctx
.
amp_black_list
=
tracer
.
_get_amp_op_list
()
with
paddle
.
no_grad
():
outputs
=
run_function
(
*
args
)
return
outputs
@
staticmethod
def
backward
(
ctx
,
*
args
):
with
paddle
.
fluid
.
dygraph
.
guard
():
# TODO need to check the recompute calling is vaild or not
# Restore inputs
inputs
=
list
(
ctx
.
inputs
)
tensor_indices
=
ctx
.
tensor_indices
tensors
=
ctx
.
saved_tensor
()
for
i
,
idx
in
enumerate
(
tensor_indices
):
inputs
[
idx
]
=
tensors
[
i
]
# paddle.enable_grad()
tracer
=
framework
.
_dygraph_tracer
()
tracer
.
_has_grad
=
True
# NOTE support AMP
# need restore auto_cast state as well as w/b list
if
ctx
.
preserve_rng_state
:
with
swith_rng_state_tracker
(
ctx
.
fw_rng_state
,
ctx
.
fwd_rng_state_tracker
):
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
,
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
)
else
:
with
paddle
.
amp
.
auto_cast
(
enable
=
ctx
.
is_fw_autocast
,
custom_white_list
=
ctx
.
amp_white_list
,
custom_black_list
=
ctx
.
amp_black_list
,
level
=
ctx
.
amp_level
,
dtype
=
ctx
.
amp_dtype
,
):
detached_inputs
=
detach_variable
(
tuple
(
inputs
))
outputs
=
ctx
.
run_function
(
*
detached_inputs
)
if
isinstance
(
outputs
,
core
.
VarBase
):
outputs
=
(
outputs
,)
assert
len
(
outputs
)
==
len
(
args
)
# run backward() with only tensor that requires grad
forward_outputs_with_grad
=
[]
# NOTE In Transformer-like network, if user put the attention mask into the recompute segment output,
# pylayer will force the stop_gradient of attention mask to be False, which will make the number of
# tensor that need grad does not match.
# the following backward_inputs_with_grad is used to avoid this case.
backward_inputs_with_grad
=
[]
for
i
in
range
(
len
(
outputs
)):
if
(
isinstance
(
outputs
[
i
],
core
.
VarBase
)
and
not
outputs
[
i
].
stop_gradient
):
forward_outputs_with_grad
.
append
(
outputs
[
i
])
backward_inputs_with_grad
.
append
(
args
[
i
])
if
len
(
forward_outputs_with_grad
)
==
0
:
raise
RuntimeError
(
"none of output has requires_grad=True, this recompute() is not necessary"
)
# actually backward
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
paddle
.
autograd
.
backward
(
forward_outputs_with_grad
,
backward_inputs_with_grad
)
grads
=
list
(
inp
.
_grad_ivar
()
for
inp
in
detached_inputs
if
isinstance
(
inp
,
core
.
VarBase
)
)
return
grads
class
RecomputeFunction
(
PyLayer
):
@
staticmethod
def
forward
(
ctx
,
run_function
,
preserve_rng_state
,
*
args
,
**
kwargs
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录