Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
519cc7b0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
519cc7b0
编写于
6月 01, 2021
作者:
W
wangguanzhong
提交者:
GitHub
6月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
split conv2d_op unittest (#33231)
上级
06c63ca0
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
741 addition
and
679 deletion
+741
-679
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+4
-0
python/paddle/fluid/tests/unittests/test_conv2d_api.py
python/paddle/fluid/tests/unittests/test_conv2d_api.py
+360
-0
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+0
-679
python/paddle/fluid/tests/unittests/test_conv2d_op_depthwise_conv.py
...le/fluid/tests/unittests/test_conv2d_op_depthwise_conv.py
+377
-0
未找到文件。
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
519cc7b0
...
...
@@ -477,6 +477,8 @@ py_test_modules(test_imperative_static_runner_mnist MODULES test_imperative_stat
py_test_modules
(
test_imperative_static_runner_while MODULES test_imperative_static_runner_while ENVS
FLAGS_cudnn_deterministic=1
)
set_tests_properties
(
test_conv2d_op PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
)
set_tests_properties
(
test_conv2d_op_depthwise_conv PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
)
set_tests_properties
(
test_conv2d_api PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
)
if
(
WITH_DISTRIBUTE
)
# FIXME(typhoonzero): add these tests back
list
(
REMOVE_ITEM DIST_TEST_OPS
"test_dist_transformer"
)
...
...
@@ -838,6 +840,8 @@ set_tests_properties(test_bilinear_interp_op PROPERTIES TIMEOUT 120)
set_tests_properties
(
test_decoupled_py_reader PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_fuse_bn_act_pass PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_conv2d_op PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_conv2d_op_depthwise_conv PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_conv2d_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_elementwise_mul_op PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_cyclic_cifar_dataset PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_fuse_all_reduce_pass PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/test_conv2d_api.py
0 → 100644
浏览文件 @
519cc7b0
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
paddle
.
enable_static
()
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
paddle.fluid
import
Program
,
program_guard
class
TestConv2DAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
input_NHWC
=
fluid
.
layers
.
data
(
name
=
"input_NHWC"
,
shape
=
[
2
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
)
input_NCHW
=
fluid
.
layers
.
data
(
name
=
"input_NCHW"
,
shape
=
[
2
,
3
,
5
,
5
],
append_batch_size
=
False
,
dtype
=
"float32"
)
fluid
.
layers
.
conv2d
(
input
=
input_NHWC
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
0
,
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NCHW"
)
fluid
.
layers
.
conv2d
(
input
=
input_NCHW
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
[
1
,
2
,
1
,
0
],
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NCHW"
)
fluid
.
layers
.
conv2d
(
input
=
input_NCHW
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
[[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NCHW"
)
fluid
.
layers
.
conv2d
(
input
=
input_NHWC
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
[[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NHWC"
)
fluid
.
layers
.
conv2d
(
input
=
input_NCHW
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
"SAME"
,
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NCHW"
)
fluid
.
layers
.
conv2d
(
input
=
input_NCHW
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
"VALID"
,
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NCHW"
)
def
test_depthwise_conv2d
(
self
):
x_var
=
paddle
.
uniform
((
2
,
8
,
8
,
4
),
dtype
=
'float32'
,
min
=-
1.
,
max
=
1.
)
conv
=
paddle
.
nn
.
Conv2D
(
in_channels
=
4
,
out_channels
=
4
,
kernel_size
=
(
3
,
3
),
groups
=
4
,
data_format
=
'NHWC'
)
y_var
=
conv
(
x_var
)
class
TestConv2DAPI_Error
(
unittest
.
TestCase
):
def
test_api
(
self
):
input
=
fluid
.
layers
.
data
(
name
=
"input"
,
shape
=
[
2
,
5
,
5
,
5
],
append_batch_size
=
False
,
dtype
=
"float32"
)
# ValueError: cudnn
def
run_1
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
0
,
dilation
=
[
1
,
1
],
groups
=
1
,
use_cudnn
=
[
0
],
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_1
)
# ValueError: data_format
def
run_2
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
0
,
dilation
=
[
1
,
1
],
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NCHWC"
)
self
.
assertRaises
(
ValueError
,
run_2
)
# ValueError: padding
def
run_3
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
"SAMEE"
,
dilation
=
[
1
,
1
],
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_3
)
def
run_4
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
[[
0
,
1
],
[
0
,
1
],
[
0
,
1
],
[
0
,
1
]],
dilation
=
[
1
,
1
],
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_4
)
def
run_5
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
[[
0
,
1
],
[
0
,
1
],
[
0
,
1
],
[
0
,
1
]],
dilation
=
[
1
,
1
],
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NHWC"
)
self
.
assertRaises
(
ValueError
,
run_5
)
# ValueError: channel dimmention
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
2
,
5
,
5
,
-
1
],
append_batch_size
=
False
,
dtype
=
"float32"
)
def
run_6
():
fluid
.
layers
.
conv2d
(
input
=
x
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
0
,
dilation
=
[
1
,
1
],
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NHWC"
)
self
.
assertRaises
(
ValueError
,
run_6
)
# ValueError: groups
def
run_7
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
3
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
0
,
dilation
=
[
1
,
1
],
groups
=
3
,
use_cudnn
=
False
,
data_format
=
"NHWC"
)
self
.
assertRaises
(
ValueError
,
run_7
)
# ValueError: filter num
def
run_8
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
0
,
filter_size
=
0
,
stride
=
0
,
padding
=
0
,
dilation
=
0
,
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_8
)
# ValueError: groups
def
run_9
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
0
,
filter_size
=
0
,
stride
=
0
,
padding
=
0
,
dilation
=
0
,
groups
=
0
,
use_cudnn
=
False
,
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_9
)
# ValueError: stride
def
run_10
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
1
,
filter_size
=
1
,
stride
=
0
,
padding
=
0
,
dilation
=
0
,
groups
=
1
,
use_cudnn
=
False
,
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_10
)
def
test_api_with_error_input
(
self
):
input
=
fluid
.
layers
.
data
(
name
=
"error_input"
,
shape
=
[
1
],
append_batch_size
=
False
,
dtype
=
"float32"
)
# ValueError: cudnn
def
run_1
():
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
0
,
filter_size
=
0
,
stride
=
0
,
padding
=
0
,
dilation
=
0
,
groups
=
0
,
use_cudnn
=
False
,
data_format
=
"NCHW"
)
self
.
assertRaises
(
ValueError
,
run_1
)
# --------- test environment variable ------
@
unittest
.
skipIf
(
not
(
core
.
is_compiled_with_cuda
()
or
core
.
is_compiled_with_rocm
()),
"core is not compiled with CUDA or ROCM"
)
class
TestConv2DEnviron
(
unittest
.
TestCase
):
def
run1
(
self
,
place
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
inputs
=
fluid
.
layers
.
data
(
shape
=
[
2
,
3
,
5
,
5
],
append_batch_size
=
False
,
name
=
"inputs"
,
dtype
=
"float32"
)
result
=
fluid
.
layers
.
conv2d
(
input
=
inputs
,
num_filters
=
4
,
filter_size
=
[
3
,
3
],
stride
=
[
1
,
1
],
padding
=
0
,
dilation
=
[
1
,
1
],
groups
=
1
,
data_format
=
"NCHW"
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"inputs"
:
self
.
input_np
},
fetch_list
=
[
result
])
def
run2
(
self
,
place
):
with
fluid
.
dygraph
.
guard
(
place
):
inputs
=
fluid
.
dygraph
.
to_variable
(
self
.
input_np
)
conv
=
paddle
.
nn
.
Conv2D
(
in_channels
=
3
,
out_channels
=
4
,
kernel_size
=
(
3
,
3
),
data_format
=
"NCHW"
)
result
=
conv
(
inputs
)
def
run3
(
self
,
place
):
with
fluid
.
dygraph
.
guard
(
place
):
inputs
=
fluid
.
dygraph
.
to_variable
(
self
.
input_np
)
conv
=
paddle
.
fluid
.
dygraph
.
nn
.
Conv2D
(
num_channels
=
3
,
num_filters
=
4
,
filter_size
=
(
3
,
3
),
)
result
=
conv
(
inputs
)
def
run_all
(
self
,
place
):
self
.
run1
(
place
)
self
.
run2
(
place
)
self
.
run3
(
place
)
def
test_environ
(
self
):
self
.
input_np
=
np
.
random
.
random
([
2
,
3
,
5
,
5
]).
astype
(
"float32"
)
for
place
in
[
paddle
.
CPUPlace
(),
paddle
.
CUDAPlace
(
0
)]:
fluid
.
set_flags
({
'FLAGS_conv2d_disable_cudnn'
:
False
})
self
.
run_all
(
place
)
fluid
.
set_flags
({
'FLAGS_conv2d_disable_cudnn'
:
True
})
self
.
run_all
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
519cc7b0
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_conv2d_op_depthwise_conv.py
0 → 100644
浏览文件 @
519cc7b0
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
paddle
.
enable_static
()
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
paddle.fluid
import
Program
,
program_guard
from
test_conv2d_op
import
TestConv2DOp
,
TestConv2DOp_v2
,
create_test_padding_SAME_class
,
create_test_padding_VALID_class
,
create_test_channel_last_class
,
create_test_cudnn_padding_SAME_class
,
create_test_cudnn_channel_last_class
#----------------TestDepthwiseConv -----
class
TestDepthwiseConv
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv2
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv3
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation2
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvandFuse
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv2andFuse
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv3andFuse
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilationandFuse
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConvWithDilation2andFuse
(
TestConv2DOp
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
class
TestDepthwiseConv_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
0
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConv2_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
1
,
0
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConv3_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvWithDilation_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
2
,
1
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvWithDilation2_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
0
,
1
,
1
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvandFuse_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
2
,
1
,
2
,
3
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConv2andFuse_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
12
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
1
,
1
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConv3andFuse_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
2
,
0
,
2
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvWithDilationandFuse_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
2
,
1
,
1
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestDepthwiseConvWithDilation2andFuse_AsyPadding
(
TestConv2DOp_v2
):
def
init_test_case
(
self
):
self
.
fuse_relu_before_depthwise_conv
=
True
self
.
use_cuda
=
True
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
3
self
.
dilations
=
[
2
,
2
]
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
24
,
f_c
,
3
,
3
]
self
.
op_type
=
"depthwise_conv2d"
def
init_paddings
(
self
):
self
.
pad
=
[
1
,
3
,
1
,
3
]
self
.
padding_algorithm
=
"EXPLICIT"
# depthwise conv2d
create_test_padding_SAME_class
(
TestDepthwiseConv_AsyPadding
)
create_test_padding_SAME_class
(
TestDepthwiseConvWithDilation_AsyPadding
)
create_test_padding_SAME_class
(
TestDepthwiseConvandFuse_AsyPadding
)
create_test_padding_SAME_class
(
TestDepthwiseConvWithDilationandFuse_AsyPadding
)
create_test_padding_VALID_class
(
TestDepthwiseConv_AsyPadding
)
create_test_padding_VALID_class
(
TestDepthwiseConvWithDilation_AsyPadding
)
create_test_padding_VALID_class
(
TestDepthwiseConvandFuse_AsyPadding
)
create_test_padding_VALID_class
(
TestDepthwiseConvWithDilationandFuse_AsyPadding
)
# channel last
create_test_channel_last_class
(
TestDepthwiseConv_AsyPadding
)
create_test_channel_last_class
(
TestDepthwiseConvWithDilation2_AsyPadding
)
create_test_channel_last_class
(
TestDepthwiseConvandFuse_AsyPadding
)
create_test_channel_last_class
(
TestDepthwiseConvWithDilationandFuse_AsyPadding
)
# ------------ depthwise conv2d in MIOPEN ---------
if
core
.
is_compiled_with_rocm
():
create_test_cudnn_padding_SAME_class
(
TestDepthwiseConv_AsyPadding
)
create_test_cudnn_padding_SAME_class
(
TestDepthwiseConvWithDilation_AsyPadding
)
create_test_padding_VALID_class
(
TestDepthwiseConv_AsyPadding
)
create_test_padding_VALID_class
(
TestDepthwiseConvWithDilation_AsyPadding
)
create_test_cudnn_channel_last_class
(
TestDepthwiseConv_AsyPadding
)
create_test_cudnn_channel_last_class
(
TestDepthwiseConvWithDilation2_AsyPadding
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录