Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5158fa4f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5158fa4f
编写于
11月 01, 2022
作者:
U
umiswing
提交者:
GitHub
11月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
summer-ospp 2022: 飞桨PaddlePaddle Sparse Conv开发和优化: gather-gemm-scatter fuse (#46679)
上级
60e0c506
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
941 addition
and
56 deletion
+941
-56
cmake/external/cutlass.cmake
cmake/external/cutlass.cmake
+43
-0
cmake/third_party.cmake
cmake/third_party.cmake
+10
-0
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
+145
-56
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
+188
-0
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
+555
-0
未找到文件。
cmake/external/cutlass.cmake
0 → 100644
浏览文件 @
5158fa4f
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
include
(
ExternalProject
)
set
(
CUTLASS_PREFIX_DIR
${
THIRD_PARTY_PATH
}
/cutlass
)
set
(
CUTLASS_REPOSITORY https://github.com/NVIDIA/cutlass.git
)
set
(
CUTLASS_TAG v2.9.1
)
include_directories
(
"
${
THIRD_PARTY_PATH
}
/cutlass/src/extern_cutlass/"
)
include_directories
(
"
${
THIRD_PARTY_PATH
}
/cutlass/src/extern_cutlass/include/"
)
include_directories
(
"
${
THIRD_PARTY_PATH
}
/cutlass/src/extern_cutlass/tools/util/include/"
)
add_definitions
(
"-DPADDLE_WITH_CUTLASS"
)
ExternalProject_Add
(
extern_cutlass
${
EXTERNAL_PROJECT_LOG_ARGS
}
${
SHALLOW_CLONE
}
GIT_REPOSITORY
${
CUTLASS_REPOSITORY
}
GIT_TAG
"
${
CUTLASS_TAG
}
"
PREFIX
${
CUTLASS_PREFIX_DIR
}
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_COMMAND
""
INSTALL_COMMAND
""
TEST_COMMAND
""
)
add_library
(
cutlass INTERFACE
)
add_dependencies
(
cutlass extern_cutlass
)
cmake/third_party.cmake
浏览文件 @
5158fa4f
...
...
@@ -505,4 +505,14 @@ if(WITH_CUSPARSELT)
list
(
APPEND third_party_deps extern_cusparselt
)
endif
()
if
(
WITH_GPU
AND NOT WITH_ARM
AND NOT WIN32
AND NOT APPLE
)
if
(
${
CMAKE_CUDA_COMPILER_VERSION
}
GREATER_EQUAL 11.0
)
include
(
external/cutlass
)
# download, build, install cusparselt
list
(
APPEND third_party_deps extern_cutlass
)
endif
()
endif
()
add_custom_target
(
third_party ALL DEPENDS
${
third_party_deps
}
)
paddle/phi/kernels/sparse/gpu/conv_kernel.cu
浏览文件 @
5158fa4f
...
...
@@ -22,6 +22,9 @@ limitations under the License. */
#include "paddle/phi/kernels/funcs/scatter.cu.h"
#include "paddle/phi/kernels/funcs/sparse/scatter.cu.h"
#include "paddle/phi/kernels/sparse/gpu/conv.cu.h"
#ifdef PADDLE_WITH_CUTLASS
#include "paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h"
#endif
#include "glog/logging.h"
...
...
@@ -120,29 +123,6 @@ void Conv3dCooGPUKernel(const GPUContext& dev_ctx,
dev_ctx
,
x
,
key
,
tmp_rulebook
,
h_counter
,
out
,
rulebook
,
counter
);
}
// 2. gather
phi
::
DenseTensor
in_features
=
phi
::
Empty
<
T
>
(
dev_ctx
,
{
rulebook_len
,
in_channels
});
phi
::
DenseTensor
out_features
=
phi
::
Empty
<
T
>
(
dev_ctx
,
{
rulebook_len
,
out_channels
});
T
*
in_features_ptr
=
in_features
.
data
<
T
>
();
T
*
out_features_ptr
=
out_features
.
data
<
T
>
();
phi
::
funcs
::
SetConstant
<
GPUContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
&
out_features
,
static_cast
<
T
>
(
0.0
f
));
Gather
<
T
,
IntT
>
(
dev_ctx
,
x
.
values
().
data
<
T
>
(),
rulebook_ptr
,
rulebook_len
,
in_channels
,
in_features_ptr
);
// 3. call gemm for every werght
auto
blas
=
phi
::
funcs
::
GetBlas
<
GPUContext
,
T
>
(
dev_ctx
);
auto
*
out_values
=
out
->
mutable_values
();
T
*
out_values_ptr
=
out_values
->
data
<
T
>
();
set_zero
(
dev_ctx
,
out_values
,
static_cast
<
T
>
(
0.0
f
));
if
(
subm
)
{
auto
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
rulebook_len
,
1
);
...
...
@@ -162,43 +142,152 @@ void Conv3dCooGPUKernel(const GPUContext& dev_ctx,
out_index_ptr
,
unique_value_ptr
);
}
#ifdef PADDLE_WITH_CUTLASS
bool
cutlass
=
true
;
if
(
dev_ctx
.
GetComputeCapability
()
<
80
)
cutlass
=
false
;
if
(
in_channels
%
4
!=
0
||
out_channels
%
4
!=
0
)
{
if
(
std
::
is_same
<
T
,
phi
::
dtype
::
float16
>::
value
)
cutlass
=
false
;
if
(
std
::
is_same
<
T
,
float
>::
value
)
cutlass
=
false
;
}
if
(
!
std
::
is_same
<
IntT
,
int32_t
>::
value
)
cutlass
=
false
;
if
(
cutlass
)
{
auto
*
out_values
=
out
->
mutable_non_zero_elements
();
T
*
out_values_ptr
=
out_values
->
data
<
T
>
();
phi
::
funcs
::
SetConstant
<
GPUContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
out_values
,
static_cast
<
T
>
(
0.0
f
));
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
if
(
h_counter_ptr
[
i
]
<=
0
)
{
continue
;
}
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
if
(
h_counter_ptr
[
i
]
<=
0
)
{
continue
;
const
int
M
=
h_counter_ptr
[
i
];
const
int
K
=
in_channels
;
const
int
N
=
out_channels
;
const
T
*
tmp_kernel_ptr
=
kernel_ptr
+
i
*
K
*
N
;
const
IntT
*
gather_indices
=
rulebook_ptr
+
h_offsets_ptr
[
i
];
const
IntT
*
scatter_indices
=
rulebook_ptr
+
rulebook_len
+
h_offsets_ptr
[
i
];
if
constexpr
(
std
::
is_same
<
T
,
phi
::
dtype
::
float16
>::
value
&&
std
::
is_same
<
IntT
,
int32_t
>::
value
)
{
fp16_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp16Kernel
(
M
,
N
,
K
);
gather_gemm_scatter
(
dev_ctx
,
reinterpret_cast
<
const
cutlass
::
half_t
*>
(
x
.
non_zero_elements
().
data
<
T
>
()),
reinterpret_cast
<
const
cutlass
::
half_t
*>
(
tmp_kernel_ptr
),
reinterpret_cast
<
cutlass
::
half_t
*>
(
out_values_ptr
),
reinterpret_cast
<
cutlass
::
half_t
*>
(
out_values_ptr
),
M
,
N
,
K
,
static_cast
<
const
int32_t
*>
(
gather_indices
),
static_cast
<
const
int32_t
*>
(
scatter_indices
),
static_cast
<
cutlass
::
half_t
>
(
1
),
static_cast
<
cutlass
::
half_t
>
(
1
));
}
if
constexpr
(
std
::
is_same
<
T
,
float
>::
value
&&
std
::
is_same
<
IntT
,
int32_t
>::
value
)
{
fp32_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp32Kernel
(
M
,
N
,
K
);
gather_gemm_scatter
(
dev_ctx
,
x
.
non_zero_elements
().
data
<
T
>
(),
tmp_kernel_ptr
,
out_values_ptr
,
out_values_ptr
,
M
,
N
,
K
,
gather_indices
,
scatter_indices
,
static_cast
<
T
>
(
1
),
static_cast
<
T
>
(
1
));
}
if
constexpr
(
std
::
is_same
<
T
,
double
>::
value
&&
std
::
is_same
<
IntT
,
int32_t
>::
value
)
{
fp64_gather_gemm_scatter
gather_gemm_scatter
=
getBestFp64Kernel
(
M
,
N
,
K
);
gather_gemm_scatter
(
dev_ctx
,
x
.
non_zero_elements
().
data
<
T
>
(),
tmp_kernel_ptr
,
out_values_ptr
,
out_values_ptr
,
M
,
N
,
K
,
gather_indices
,
scatter_indices
,
static_cast
<
T
>
(
1
),
static_cast
<
T
>
(
1
));
}
}
}
else
{
#endif
// 2. gather
phi
::
DenseTensor
in_features
=
phi
::
Empty
<
T
>
(
dev_ctx
,
{
rulebook_len
,
in_channels
});
phi
::
DenseTensor
out_features
=
phi
::
Empty
<
T
>
(
dev_ctx
,
{
rulebook_len
,
out_channels
});
T
*
in_features_ptr
=
in_features
.
data
<
T
>
();
T
*
out_features_ptr
=
out_features
.
data
<
T
>
();
phi
::
funcs
::
SetConstant
<
GPUContext
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
&
out_features
,
static_cast
<
T
>
(
0.0
f
));
// call gemm: (n, in_channels) * (in_channels, out_channels)
const
int
M
=
h_counter_ptr
[
i
];
const
int
K
=
in_channels
;
const
int
N
=
out_channels
;
T
*
tmp_in_ptr
=
in_features_ptr
+
h_offsets_ptr
[
i
]
*
in_channels
;
const
T
*
tmp_kernel_ptr
=
kernel_ptr
+
i
*
K
*
N
;
T
*
tmp_out_ptr
=
out_features_ptr
+
h_offsets_ptr
[
i
]
*
out_channels
;
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
tmp_in_ptr
,
tmp_kernel_ptr
,
static_cast
<
T
>
(
0
),
tmp_out_ptr
);
}
Gather
<
T
,
IntT
>
(
dev_ctx
,
x
.
values
().
data
<
T
>
(),
rulebook_ptr
,
rulebook_len
,
in_channels
,
in_features_ptr
);
// 3. call gemm for every werght
auto
blas
=
phi
::
funcs
::
GetBlas
<
GPUContext
,
T
>
(
dev_ctx
);
auto
*
out_values
=
out
->
mutable_values
();
T
*
out_values_ptr
=
out_values
->
data
<
T
>
();
set_zero
(
dev_ctx
,
out_values
,
static_cast
<
T
>
(
0.0
f
));
// 4. scatter
phi
::
funcs
::
sparse
::
ScatterV2
<
T
>
(
dev_ctx
,
out_features_ptr
,
out_index
.
data
<
int
>
(),
unique_value
.
data
<
int
>
(),
out
->
nnz
(),
kernel_size
,
out_channels
,
1
,
out_values_ptr
);
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
if
(
h_counter_ptr
[
i
]
<=
0
)
{
continue
;
}
// call gemm: (n, in_channels) * (in_channels, out_channels)
const
int
M
=
h_counter_ptr
[
i
];
const
int
K
=
in_channels
;
const
int
N
=
out_channels
;
T
*
tmp_in_ptr
=
in_features_ptr
+
h_offsets_ptr
[
i
]
*
in_channels
;
const
T
*
tmp_kernel_ptr
=
kernel_ptr
+
i
*
K
*
N
;
T
*
tmp_out_ptr
=
out_features_ptr
+
h_offsets_ptr
[
i
]
*
out_channels
;
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
M
,
N
,
K
,
static_cast
<
T
>
(
1
),
tmp_in_ptr
,
tmp_kernel_ptr
,
static_cast
<
T
>
(
0
),
tmp_out_ptr
);
}
// 4. scatter
phi
::
funcs
::
sparse
::
ScatterV2
<
T
>
(
dev_ctx
,
out_features_ptr
,
out_index
.
data
<
int
>
(),
unique_value
.
data
<
int
>
(),
out
->
nnz
(),
kernel_size
,
out_channels
,
1
,
out_values_ptr
);
#ifdef PADDLE_WITH_CUTLASS
}
#endif
}
/**
...
...
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.cu
0 → 100644
浏览文件 @
5158fa4f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_CUTLASS
#include "paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h"
namespace
phi
{
namespace
sparse
{
fp16_gather_gemm_scatter
getBestFp16Kernel
(
const
int
M
,
const
int
N
,
const
int
K
)
{
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align4
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
16
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
32
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
32
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
64
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
64
&&
N
==
64
)
{
if
(
M
>
100000
)
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_f16_s1688gemm_f16_64x128_32x2_nn_align8
::
Gemm
>
;
if
(
M
>
20000
)
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_f16_s1688gemm_f16_64x64_32x2_nn_align8
::
Gemm
>
;
if
(
M
>
15000
)
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_128x64_32x2_nn_align8
::
Gemm
>
;
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
if
(
K
==
128
)
{
if
(
M
>=
5000
)
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h16816gemm_64x64_64x5_nn_align8
::
Gemm
>
;
}
if
(
N
==
128
)
{
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
::
Gemm
>
;
}
return
launchKernel
<
cutlass
::
half_t
,
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align4
::
Gemm
>
;
}
fp32_gather_gemm_scatter
getBestFp32Kernel
(
const
int
M
,
const
int
N
,
const
int
K
)
{
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
16
)
{
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
32
)
{
if
(
M
>=
10000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
32
)
{
if
(
M
>=
10000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
64
)
{
if
(
M
>=
10000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
64
&&
N
==
64
)
{
if
(
M
>=
15000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
if
(
K
==
128
)
{
if
(
M
>=
100000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_128x128_16x3_nn_align4
::
Gemm
>
;
if
(
M
>=
5000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_256x64_16x4_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688tf32gemm_256x128_16x3_nn_align4
::
Gemm
>
;
}
if
(
N
==
128
)
{
if
(
M
>=
100000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688tf32gemm_256x128_16x3_nn_align4
::
Gemm
>
;
if
(
M
>=
5000
)
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_128x128_16x3_nn_align4
::
Gemm
>
;
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x128_16x6_nn_align4
::
Gemm
>
;
}
return
launchKernel
<
float
,
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
::
Gemm
>
;
}
fp64_gather_gemm_scatter
getBestFp64Kernel
(
const
int
M
,
const
int
N
,
const
int
K
)
{
if
(
K
==
4
&&
N
==
16
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
16
)
{
if
(
M
>=
10000
)
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
16
&&
N
==
32
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
32
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
32
&&
N
==
64
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
if
(
K
==
64
&&
N
==
64
)
{
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
return
launchKernel
<
double
,
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
::
Gemm
>
;
}
}
// namespace sparse
}
// namespace phi
#endif
paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h
0 → 100644
浏览文件 @
5158fa4f
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_CUTLASS
#include "cutlass/arch/mma.h"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/gemm/device/gemm_grouped.h"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/util/device_memory.h"
#include "examples/common/helper.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
namespace
phi
{
namespace
sparse
{
typedef
void
(
*
fp16_gather_gemm_scatter
)(
const
GPUContext
&
dev_ctx
,
const
cutlass
::
half_t
*
const
a
,
const
cutlass
::
half_t
*
const
b
,
const
cutlass
::
half_t
*
const
c
,
cutlass
::
half_t
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
cutlass
::
half_t
const
alpha
,
cutlass
::
half_t
const
beta
);
typedef
void
(
*
fp32_gather_gemm_scatter
)(
const
GPUContext
&
dev_ctx
,
const
float
*
const
a
,
const
float
*
const
b
,
const
float
*
const
c
,
float
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
float
const
alpha
,
float
const
beta
);
typedef
void
(
*
fp64_gather_gemm_scatter
)(
const
GPUContext
&
dev_ctx
,
const
double
*
const
a
,
const
double
*
const
b
,
const
double
*
const
c
,
double
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
double
const
alpha
,
double
const
beta
);
fp16_gather_gemm_scatter
getBestFp16Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
fp32_gather_gemm_scatter
getBestFp32Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
fp64_gather_gemm_scatter
getBestFp64Kernel
(
const
int
M
,
const
int
K
,
const
int
N
);
template
<
typename
T
,
typename
Gemm
>
void
launchKernel
(
const
GPUContext
&
dev_ctx
,
const
T
*
const
a
,
const
T
*
const
b
,
const
T
*
const
c
,
T
*
const
d
,
const
int
m
,
const
int
n
,
const
int
k
,
const
int32_t
*
a_indices
,
const
int32_t
*
c_d_indices
,
T
const
alpha
,
T
const
beta
)
{
cutlass
::
gemm
::
GemmCoord
problem_size_real
({
m
,
n
,
k
});
int
split_k_slices
=
1
;
typename
Gemm
::
Arguments
arguments
{
cutlass
::
gemm
::
GemmUniversalMode
::
kGemm
,
problem_size_real
,
split_k_slices
,
{
alpha
,
beta
},
a
,
b
,
c
,
d
,
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
mk
()),
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
kn
()),
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
mn
()),
cutlass
::
layout
::
RowMajor
().
capacity
(
problem_size_real
.
mn
()),
problem_size_real
.
k
(),
problem_size_real
.
n
(),
problem_size_real
.
n
(),
problem_size_real
.
n
(),
a_indices
,
nullptr
,
c_d_indices
};
size_t
workspace_size
=
Gemm
::
get_workspace_size
(
arguments
);
cutlass
::
device_memory
::
allocation
<
uint8_t
>
workspace
(
workspace_size
);
Gemm
gemm_op
;
cutlass
::
Status
status
=
gemm_op
.
can_implement
(
arguments
);
CUTLASS_CHECK
(
status
);
status
=
gemm_op
.
initialize
(
arguments
,
workspace
.
get
());
CUTLASS_CHECK
(
status
);
gemm_op
(
dev_ctx
.
stream
());
}
struct
cutlass_tensorop_h1688gemm_128x64_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
128
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_64x128_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
128
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_128x64_32x2_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
128
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
4
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
4
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h1688gemm_64x64_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_h16816gemm_64x64_64x5_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
64
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
64
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
16
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
cutlass
::
half_t
,
cutlass
::
half_t
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
5
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_f16_s1688gemm_f16_64x128_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
128
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_f16_s1688gemm_f16_64x64_32x2_nn_align8
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
cutlass
::
half_t
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm75
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
32
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
cutlass
::
half_t
,
8
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
2
,
8
,
8
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_64x64_16x10_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
10
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_128x128_16x3_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
128
,
128
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
3
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_256x64_16x4_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
256
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
4
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688tf32gemm_256x128_16x3_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
256
,
128
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
3
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688f16gemm_64x128_16x6_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
128
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
6
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF16
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_s1688gemm_64x64_16x3_nn_align4
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
layout
::
RowMajor
,
float
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
64
,
64
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
32
,
32
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
8
,
8
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
float
,
4
,
float
,
float
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
3
,
4
,
4
,
cutlass
::
arch
::
OpMultiplyAddFastF32
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_d884gemm_16x32_16x5_nn_align1
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
16
,
32
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
16
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
8
,
8
,
4
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
double
,
1
,
double
,
double
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
5
,
1
,
1
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
struct
cutlass_tensorop_d884gemm_32x16_16x5_nn_align1
{
using
Gemm
=
cutlass
::
gemm
::
device
::
GemmUniversal
<
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
layout
::
RowMajor
,
double
,
cutlass
::
arch
::
OpClassTensorOp
,
cutlass
::
arch
::
Sm80
,
cutlass
::
gemm
::
GemmShape
<
32
,
16
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
16
,
16
,
16
>
,
cutlass
::
gemm
::
GemmShape
<
8
,
8
,
4
>
,
cutlass
::
epilogue
::
thread
::
LinearCombination
<
double
,
1
,
double
,
double
>
,
cutlass
::
gemm
::
threadblock
::
GemmIdentityThreadblockSwizzle
<
8
>
,
5
,
1
,
1
,
cutlass
::
arch
::
OpMultiplyAdd
,
cutlass
::
ComplexTransform
::
kNone
,
cutlass
::
ComplexTransform
::
kNone
,
true
,
false
,
true
>
;
};
}
// namespace sparse
}
// namespace phi
#endif
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录