提交 51113cfe 编写于 作者: C chengduoZH

write together

上级 ed120ee7
...@@ -69,6 +69,13 @@ function(op_library TARGET) ...@@ -69,6 +69,13 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n")
endif() endif()
# conv_transpose_op contains several operators
if ("${TARGET}" STREQUAL "conv_transpose_op")
set(pybind_flag 1)
# It's enough to just adding one operator to pybind
file(APPEND ${pybind_file} "USE_OP(conv2dtranspose);\n")
endif()
# save_restore_op contains several operators # save_restore_op contains several operators
if ("${TARGET}" STREQUAL "save_restore_op") if ("${TARGET}" STREQUAL "save_restore_op")
set(pybind_flag 1) set(pybind_flag 1)
...@@ -124,7 +131,7 @@ set(DEPS_OPS ...@@ -124,7 +131,7 @@ set(DEPS_OPS
pool_op pool_op
pool_with_index_op pool_with_index_op
lstm_op lstm_op
conv3dtranspose_op) conv_transpose_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
...@@ -136,7 +143,7 @@ op_library(sum_op DEPS net_op) ...@@ -136,7 +143,7 @@ op_library(sum_op DEPS net_op)
op_library(pool_op DEPS pooling) op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling) op_library(pool_with_index_op DEPS pooling)
op_library(lstm_op DEPS sequence2batch lstm_compute) op_library(lstm_op DEPS sequence2batch lstm_compute)
op_library(conv3dtranspose_op DEPS vol2col) op_library(conv_transpose_op DEPS vol2col)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS}) foreach(src ${GENERAL_OPS})
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2dtranspose_op.h"
namespace paddle {
namespace operators {
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv2DTransposeOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv2DTransposeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv2DTransposeOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
for (size_t i = 0; i < paddings.size(); ++i) {
PADDLE_ENFORCE_EQ(paddings[i], 0,
"No Padding allowed in conv transpose op.");
}
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
"Conv2DTransposeOp input should be 4-D tensor.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
"Conv2DTransposeOp filter should be 4-D tensor.");
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
"input and kernel input dimension should be equal.");
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
ctx->SetOutputDim("Output",
{in_dims[0], filter_dims[1], output_height, output_width});
}
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"(Tensor) The input tensor of convolution transpose operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of input channels, H and W is the height and width of image.");
AddInput("Filter",
"(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMHW, where C is the number of "
"output image channels, M is the number of input image channels, "
"H and W is height and width of filter. "
"We enforce groups number == 1 and padding == 0 in "
"convolution transpose Scenario.");
AddOutput("Output",
"(Tensor) The output tensor of convolution transpose operator."
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides",
"strides of convolution transpose operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings",
"paddings of convolution transpose operator.")
.SetDefault({0, 0});
AddComment(R"DOC(
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
}
void Conv2DTransposeOpGrad::InferShape(
framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv2dtranspose, ops::Conv2DTransposeOp,
ops::Conv2DTransposeOpMaker, conv2dtranspose_grad,
ops::Conv2DTransposeOpGrad);
REGISTER_OP_CPU_KERNEL(
conv2dtranspose,
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2dtranspose_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv2dtranspose_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
conv2dtranspose,
ops::GemmConv2DTransposeKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2dtranspose_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;
// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DTransposeOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Conv2DTransposeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Conv2DTransposeOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
template <typename Place, typename T>
class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
// The filter will be reshaped, so it should not be constant pointer
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* output = context.Output<Tensor>("Output");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2dtranspose.
const int batch_size = input->dims()[0];
const int m = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int k_h = filter.dims()[2];
const int k_w = filter.dims()[3];
const int c = output->dims()[1]; // output channels
const int o_h = output->dims()[2];
const int o_w = output->dims()[3];
paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
col2im;
// use col_shape in the im2col and col2im calculation
DDim col_shape = {c, k_h, k_w, h, w};
// use col_matrix_shape in the gemm calculation
DDim col_matrix_shape = {c * k_h * k_w, h * w};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix;
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
DDim output_shape = {c, o_h, o_w};
DDim input_matrix_shape = {m, h * w};
DDim filter_matrix_shape = {m, c * k_h * k_w};
filter.Resize(filter_matrix_shape);
// convolution transpose: gemm + col2im (similar to conv-backward on input)
output->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*output);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
// batch with size (M, h * w)
Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// filter size: (M, c * k_h * k_w)
// output size: (c, o_h, o_w)
Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w)
math::matmul<Place, T>(context.device_context(), filter, true,
input_batch, false, T(1.0), &col_matrix, T(0.0));
col2im(context.device_context(), output_batch, col, strides[0],
strides[1], 0, 0, 0, 0);
}
}
};
template <typename Place, typename T>
class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// Actually, no paddings and groups allowed in conv transpose.
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
const int batch_size = input->dims()[0];
const int m = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int k_h = filter.dims()[2];
const int k_w = filter.dims()[3];
const int c = output_grad->dims()[1]; // output channels
const int o_h = output_grad->dims()[2];
const int o_w = output_grad->dims()[3];
// Only im2col functor required for bp to get to the right shape
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col and col2im calculation
DDim col_shape = {c, k_h, k_w, h, w};
// use col_matrix_shape in the gemm calculation
DDim col_matrix_shape_f = {c * h * w, k_h * k_w};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
DDim output_shape = {c, o_h, o_w};
DDim input_matrix_shape = {m, h * w};
DDim filter_matrix_shape = {m, c * k_h * k_w};
filter.Resize(filter_matrix_shape);
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
if (input_grad) {
Tensor col_matrix;
col_matrix.ShareDataWith(col);
DDim col_matrix_shape = {c * k_h * k_w, h * w};
col_matrix.Resize(col_matrix_shape);
input_grad->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
// batch with size (c, o_h * o_w)
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
// filter of size (m, c * k_h * k_w)
// batch with size (m, h, w)
Tensor input_grad_batch =
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
// im2col: dy from (c, o_h, o_w) -> (c * k_h * k_w, h * w)
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, c, h)
math::matmul<Place, T>(context.device_context(), filter, false,
col_matrix, false, T(1.0), &input_grad_batch,
T(0.0));
}
}
// filter gradient required
if (filter_grad) {
Tensor col_matrix_f;
col_matrix_f.ShareDataWith(col);
DDim col_matrix_shape_f = {c * h * w, k_h * k_w};
col_matrix_f.Resize(col_matrix_shape_f);
filter_grad->mutable_data<T>(context.GetPlace());
Tensor filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
auto t = framework::EigenVector<T>::Flatten(filter_grad_);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; ++i) {
// batch with size (c, o_h, o_w)
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
// input batch
Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// im2col: (c * h * w, k_h * k_w)
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);
// gemm: d_filter = x * y_grad^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, c, h)
math::matmul<Place, T>(context.device_context(), in_batch, false,
col_matrix_f, true, T(1.0), &filter_grad_,
T(1.0));
}
}
}
};
} // namespace operators
} // namespace paddle
...@@ -12,18 +12,18 @@ ...@@ -12,18 +12,18 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/conv3dtranspose_op.h" #include "paddle/operators/conv_transpose_op.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
void Conv3DTransposeOp::InferShape(framework::InferShapeContext* ctx) const { void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"), PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of Conv3DTransposeOp should not be null."); "Input(Input) of ConvTransposeOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"), PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of Conv3DTransposeOp should not be null."); "Input(Filter) of ConvTransposeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"), PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of Conv3DTransposeOp should not be null."); "Output(Output) of ConvTransposeOp should not be null.");
auto in_dims = ctx->GetInputDim("Input"); auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter"); auto filter_dims = ctx->GetInputDim("Filter");
...@@ -35,12 +35,20 @@ void Conv3DTransposeOp::InferShape(framework::InferShapeContext* ctx) const { ...@@ -35,12 +35,20 @@ void Conv3DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
"No Padding allowed in conv transpose op."); "No Padding allowed in conv transpose op.");
} }
PADDLE_ENFORCE_EQ(in_dims.size(), 5, PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
"Conv3DTransposeOp input should be 5-D tensor."); "ConvTransposeOp intput should be 4-D or 5-D tensor.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 5, PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
"Conv3DTransposeOp filter should be 5-D tensor."); "ConvTransposeOp input dimension and filter dimension "
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0], "should be the same.");
"input and kernel input dimension should be equal."); PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
"ConvTransposeOp input dimension and strides dimension should "
"be consistent.");
PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
"ConvTransposeOp paddings dimension and Conv strides "
"dimension should be the same.");
PADDLE_ENFORCE_EQ(
in_dims[1], filter_dims[0],
"ConvTransposeOp input and kernel input dimension should be equal.");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]}); std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
for (size_t i = 0; i < paddings.size(); ++i) { for (size_t i = 0; i < paddings.size(); ++i) {
...@@ -50,6 +58,37 @@ void Conv3DTransposeOp::InferShape(framework::InferShapeContext* ctx) const { ...@@ -50,6 +58,37 @@ void Conv3DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
} }
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"(Tensor) The input tensor of convolution transpose operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of input channels, H and W is the height and width of image.");
AddInput("Filter",
"(Tensor) The filter tensor of convolution transpose operator."
"The format of the filter tensor is CMHW, where C is the number of "
"output image channels, M is the number of input image channels, "
"H and W is height and width of filter. "
"We enforce groups number == 1 and padding == 0 in "
"convolution transpose Scenario.");
AddOutput("Output",
"(Tensor) The output tensor of convolution transpose operator."
"The format of output tensor is also NCHW.");
AddAttr<std::vector<int>>("strides",
"strides of convolution transpose operator.")
.SetDefault({1, 1});
AddAttr<std::vector<int>>("paddings",
"paddings of convolution transpose operator.")
.SetDefault({0, 0});
AddComment(R"DOC(
The convolution transpose operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC");
}
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(
framework::OpProto* proto, framework::OpAttrChecker* op_checker) framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
...@@ -85,8 +124,7 @@ parameters is checked in the infer-shape. ...@@ -85,8 +124,7 @@ parameters is checked in the infer-shape.
)DOC"); )DOC");
} }
void Conv3DTransposeOpGrad::InferShape( void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input"); auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter"); auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) { if (ctx->HasOutput(framework::GradVarName("Input"))) {
...@@ -101,9 +139,19 @@ void Conv3DTransposeOpGrad::InferShape( ...@@ -101,9 +139,19 @@ void Conv3DTransposeOpGrad::InferShape(
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(conv3dtranspose, ops::Conv3DTransposeOp,
ops::Conv3DTransposeOpMaker, conv3dtranspose_grad, REGISTER_OP(conv2dtranspose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
ops::Conv3DTransposeOpGrad); conv2dtranspose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL(
conv2dtranspose,
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
conv2dtranspose_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP(conv3dtranspose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
conv3dtranspose_grad, ops::ConvTransposeOpGrad);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
conv3dtranspose, conv3dtranspose,
......
...@@ -12,10 +12,17 @@ ...@@ -12,10 +12,17 @@
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/operators/conv3dtranspose_op.h" #include "paddle/operators/conv_transpose_op.h"
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
conv2dtranspose,
ops::GemmConv2DTransposeKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
conv2dtranspose_grad,
ops::GemmConv2DTransposeGradKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
conv3dtranspose, conv3dtranspose,
ops::GemmConv3DTransposeKernel<paddle::platform::GPUPlace, float>); ops::GemmConv3DTransposeKernel<paddle::platform::GPUPlace, float>);
......
...@@ -16,6 +16,7 @@ limitations under the License. */ ...@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h" #include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h" #include "paddle/operators/math/vol2col.h"
...@@ -27,13 +28,19 @@ using DDim = framework::DDim; ...@@ -27,13 +28,19 @@ using DDim = framework::DDim;
// Define Op classes in .h file so that other conv transpose // Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code. // operator implementations can reuse the code.
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Conv2DTransposeOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
Conv3DTransposeOpMaker(framework::OpProto* proto, Conv3DTransposeOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker); framework::OpAttrChecker* op_checker);
}; };
class Conv3DTransposeOp : public framework::OperatorWithKernel { class ConvTransposeOp : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
...@@ -41,7 +48,7 @@ class Conv3DTransposeOp : public framework::OperatorWithKernel { ...@@ -41,7 +48,7 @@ class Conv3DTransposeOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext* ctx) const override; void InferShape(framework::InferShapeContext* ctx) const override;
}; };
class Conv3DTransposeOpGrad : public framework::OperatorWithKernel { class ConvTransposeOpGrad : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
...@@ -50,7 +57,7 @@ class Conv3DTransposeOpGrad : public framework::OperatorWithKernel { ...@@ -50,7 +57,7 @@ class Conv3DTransposeOpGrad : public framework::OperatorWithKernel {
}; };
template <typename Place, typename T> template <typename Place, typename T>
class GemmConv3DTransposeKernel : public framework::OpKernel<T> { class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input"); const Tensor* input = context.Input<Tensor>("Input");
...@@ -61,6 +68,206 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> { ...@@ -61,6 +68,206 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
std::vector<int> strides = context.Attr<std::vector<int>>("strides"); std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2dtranspose.
const int batch_size = input->dims()[0];
const int m = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int k_h = filter.dims()[2];
const int k_w = filter.dims()[3];
const int c = output->dims()[1]; // output channels
const int o_h = output->dims()[2];
const int o_w = output->dims()[3];
paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
col2im;
// use col_shape in the im2col and col2im calculation
DDim col_shape = {c, k_h, k_w, h, w};
// use col_matrix_shape in the gemm calculation
DDim col_matrix_shape = {c * k_h * k_w, h * w};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor col_matrix;
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
DDim output_shape = {c, o_h, o_w};
DDim input_matrix_shape = {m, h * w};
DDim filter_matrix_shape = {m, c * k_h * k_w};
filter.Resize(filter_matrix_shape);
// convolution transpose: gemm + col2im (similar to conv-backward on input)
output->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*output);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
// batch with size (M, h * w)
Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// filter size: (M, c * k_h * k_w)
// output size: (c, o_h, o_w)
Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w)
math::matmul<Place, T>(context.device_context(), filter, true,
input_batch, false, T(1.0), &col_matrix, T(0.0));
col2im(context.device_context(), output_batch, col, strides[0],
strides[1], 0, 0, 0, 0);
}
}
};
template <typename Place, typename T>
class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// Actually, no paddings and groups allowed in conv transpose.
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
const int batch_size = input->dims()[0];
const int m = input->dims()[1];
const int h = input->dims()[2];
const int w = input->dims()[3];
const int k_h = filter.dims()[2];
const int k_w = filter.dims()[3];
const int c = output_grad->dims()[1]; // output channels
const int o_h = output_grad->dims()[2];
const int o_w = output_grad->dims()[3];
// Only im2col functor required for bp to get to the right shape
paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kCFO, Place, T>
im2col;
// use col_shape in the im2col and col2im calculation
DDim col_shape = {c, k_h, k_w, h, w};
// use col_matrix_shape in the gemm calculation
DDim col_matrix_shape_f = {c * h * w, k_h * k_w};
Tensor col;
col.mutable_data<T>(col_shape, context.GetPlace());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
DDim output_shape = {c, o_h, o_w};
DDim input_matrix_shape = {m, h * w};
DDim filter_matrix_shape = {m, c * k_h * k_w};
filter.Resize(filter_matrix_shape);
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
if (input_grad) {
Tensor col_matrix;
col_matrix.ShareDataWith(col);
DDim col_matrix_shape = {c * k_h * k_w, h * w};
col_matrix.Resize(col_matrix_shape);
input_grad->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*input_grad);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
// batch with size (c, o_h * o_w)
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
// filter of size (m, c * k_h * k_w)
// batch with size (m, h, w)
Tensor input_grad_batch =
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
// im2col: dy from (c, o_h, o_w) -> (c * k_h * k_w, h * w)
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, c, h)
math::matmul<Place, T>(context.device_context(), filter, false,
col_matrix, false, T(1.0), &input_grad_batch,
T(0.0));
}
}
// filter gradient required
if (filter_grad) {
Tensor col_matrix_f;
col_matrix_f.ShareDataWith(col);
DDim col_matrix_shape_f = {c * h * w, k_h * k_w};
col_matrix_f.Resize(col_matrix_shape_f);
filter_grad->mutable_data<T>(context.GetPlace());
Tensor filter_grad_ = *filter_grad;
filter_grad_.Resize(filter_matrix_shape);
auto t = framework::EigenVector<T>::Flatten(filter_grad_);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
for (int i = 0; i < batch_size; ++i) {
// batch with size (c, o_h, o_w)
Tensor output_grad_batch =
output_grad->Slice(i, i + 1).Resize(output_shape);
// input batch
Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
// im2col: (c * h * w, k_h * k_w)
im2col(context.device_context(), output_grad_batch, col, strides[0],
strides[1], paddings[0], paddings[0], paddings[1], paddings[1]);
// gemm: d_filter = x * y_grad^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, c, h)
math::matmul<Place, T>(context.device_context(), in_batch, false,
col_matrix_f, true, T(1.0), &filter_grad_,
T(1.0));
}
}
}
};
template <typename Place, typename T>
class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
// The filter will be reshaped, so it should not be constant pointer
Tensor filter = *context.Input<Tensor>("Filter");
Tensor* output = context.Output<Tensor>("Output");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
// TODO(chengduo): Paddings can be added in future. // TODO(chengduo): Paddings can be added in future.
// groups will alway be disabled in conv3dtranspose. // groups will alway be disabled in conv3dtranspose.
......
...@@ -44,7 +44,7 @@ class TestConv2dTransposeOp(OpTest): ...@@ -44,7 +44,7 @@ class TestConv2dTransposeOp(OpTest):
input_ = np.random.random(self.input_size).astype("float32") input_ = np.random.random(self.input_size).astype("float32")
filter_ = np.random.random(self.filter_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32")
output = conv2dtranspose_forward_naive( output = conv2dtranspose_forward_naive(
input_, filter_, conv2dtranspose_param).astype("float32") input_, filter_, conv2dtranspose_param).astype('float32')
# print 'deconv output py', output, output.shape # print 'deconv output py', output, output.shape
self.inputs = {'Input': input_, 'Filter': filter_} self.inputs = {'Input': input_, 'Filter': filter_}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册