You need to sign in or sign up before continuing.
提交 510f0080 编写于 作者: C chengduoZH

Add pool3d unit test

上级 33d99998
import unittest
import numpy as np
from op_test import OpTest
def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0]):
N, C, D, H, W = x.shape
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
return out
def ave_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0]):
N, C, D, H, W = x.shape
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
out = np.zeros((N, C, D_out, H_out, W_out))
for k in xrange(D_out):
d_start = np.max((k * strides[0] - paddings[0], 0))
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
for i in xrange(H_out):
h_start = np.max((i * strides[0] - paddings[0], 0))
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
for j in xrange(W_out):
w_start = np.max((j * strides[1] - paddings[1], 0))
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, 4)) / (
(d_end - d_start) * (h_end - h_start) * (w_end - w_start))
return out
class TestPool3d_Op(OpTest):
def setUp(self):
self.initTestCase()
self.op_type = "pool3d"
input = np.random.random(self.shape).astype("float32")
output = self.pool3D_forward_naive(input, self.ksize, self.strides,
self.paddings)
self.inputs = {'Input': input}
self.attrs = {
'strides': self.strides,
'paddings': self.paddings,
'ksize': self.ksize,
'pooling_type': self.pool_type,
}
self.outputs = {'Output': output}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(set(['Input']), 'Output', max_relative_error=0.07)
def initTestCase(self):
self.pool_type = "ave"
self.pool3D_forward_naive = ave_pool3D_forward_naive
self.shape = [2, 3, 5, 5, 5]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1]
self.paddings = [0, 0, 0]
class TestCase1(TestPool3d_Op):
def initTestCase(self):
self.op_type = "pool3d"
self.pool_type = "ave"
self.pool3D_forward_naive = ave_pool3D_forward_naive
self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1]
self.paddings = [1, 1, 1]
# class TestCase2(TestPool3d_Op):
# def initTestCase(self):
# self.op_type = "pool3d"
# self.pool_type = "max"
# self.pool3D_forward_naive = max_pool3D_forward_naive
# self.shape = [2, 3, 5, 5, 5]
# self.ksize = [3, 3, 3]
# self.strides = [1, 1, 1]
# self.paddings = [1, 1, 1]
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册