Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
507af1c8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
507af1c8
编写于
2月 20, 2023
作者:
U
umiswing
提交者:
GitHub
2月 20, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add generator scripts for cutlass (#50364)
上级
c92b1c54
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
679 addition
and
1 deletion
+679
-1
cmake/external/cutlass.cmake
cmake/external/cutlass.cmake
+8
-1
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_generator.py
...rnels/sparse/gpu/cutlass/gather_gemm_scatter_generator.py
+250
-0
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_manifest.py
...ernels/sparse/gpu/cutlass/gather_gemm_scatter_manifest.py
+101
-0
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_operation.py
...rnels/sparse/gpu/cutlass/gather_gemm_scatter_operation.py
+320
-0
未找到文件。
cmake/external/cutlass.cmake
浏览文件 @
507af1c8
...
...
@@ -34,7 +34,14 @@ ExternalProject_Add(
PREFIX
${
CUTLASS_PREFIX_DIR
}
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_COMMAND
""
BUILD_COMMAND
mkdir -p
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass/build/generated/gemm
&&
${
PYTHON_EXECUTABLE
}
-B
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_generator.py
"
${
THIRD_PARTY_PATH
}
/cutlass/src/extern_cutlass/tools/library/scripts/"
"
${
CMAKE_SOURCE_DIR
}
/paddle/phi/kernels/sparse/gpu/cutlass/build"
"
${
CMAKE_CUDA_COMPILER_VERSION
}
"
INSTALL_COMMAND
""
TEST_COMMAND
""
)
...
...
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_generator.py
0 → 100644
浏览文件 @
507af1c8
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
sys
.
argv
[
1
])
from
gather_gemm_scatter_manifest
import
GatherGemmScatterManifest
from
gather_gemm_scatter_operation
import
GatherGemmScatterOperation
from
generator
import
(
ComplexTransform
,
CudaToolkitVersionSatisfies
,
EpilogueFunctor
,
GemmKind
,
SwizzlingFunctor
,
TensorDescription
,
)
from
library
import
(
DataType
,
LayoutType
,
MathInstruction
,
MathOperation
,
OpcodeClass
,
TileDescription
,
)
from
manifest
import
GeneratorTarget
def
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type
,
alignment_constraints
,
complex_transforms
=
None
,
epilogue_functor
=
EpilogueFunctor
.
LinearCombination
,
swizzling_functor
=
SwizzlingFunctor
.
Identity8
,
):
# To use StreamK decomposition for basic GEMMs, set `swizzling_functor = SwizzlingFunctor.StreamK`
if
complex_transforms
is
None
:
complex_transforms
=
[
(
ComplexTransform
.
none
,
ComplexTransform
.
none
),
]
element_a
,
element_b
,
element_c
,
element_epilogue
=
data_type
operations
=
[]
# by default, only generate the largest tile and largest alignment
# if manifest.kernel_filter == '':
# tile_descriptions = [tile_descriptions[0],]
# alignment_constraints = [alignment_constraints[0],]
for
layout
in
layouts
:
for
tile_description
in
tile_descriptions
:
for
alignment
in
alignment_constraints
:
for
complex_transform
in
complex_transforms
:
alignment_c
=
min
(
8
,
alignment
)
A
=
TensorDescription
(
element_a
,
layout
[
0
],
alignment
,
complex_transform
[
0
]
)
B
=
TensorDescription
(
element_b
,
layout
[
1
],
alignment
,
complex_transform
[
1
]
)
C
=
TensorDescription
(
element_c
,
layout
[
2
],
alignment_c
)
new_operation
=
GatherGemmScatterOperation
(
GemmKind
.
Universal
,
tile_description
.
minimum_compute_capability
,
tile_description
,
A
,
B
,
C
,
element_epilogue
,
epilogue_functor
,
swizzling_functor
,
)
manifest
.
append
(
new_operation
)
operations
.
append
(
new_operation
)
return
operations
def
GenerateSM70_TensorOp_884
(
manifest
,
cuda_version
):
if
not
CudaToolkitVersionSatisfies
(
cuda_version
,
10
,
1
):
return
layouts
=
[
(
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
,
LayoutType
.
RowMajor
),
]
math_instructions
=
[
MathInstruction
(
[
8
,
8
,
4
],
DataType
.
f16
,
DataType
.
f16
,
DataType
.
f32
,
OpcodeClass
.
TensorOp
,
MathOperation
.
multiply_add
,
),
MathInstruction
(
[
8
,
8
,
4
],
DataType
.
f16
,
DataType
.
f16
,
DataType
.
f16
,
OpcodeClass
.
TensorOp
,
MathOperation
.
multiply_add
,
),
]
min_cc
=
70
max_cc
=
75
alignment_constraints
=
[
8
,
4
,
2
,
1
]
for
math_inst
in
math_instructions
:
tile_descriptions
=
[
TileDescription
(
[
256
,
128
,
32
],
2
,
[
4
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
256
,
32
],
2
,
[
2
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
128
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
256
,
64
,
32
],
2
,
[
4
,
1
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
256
,
32
],
2
,
[
1
,
4
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
128
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
128
,
64
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
TileDescription
(
[
64
,
64
,
32
],
2
,
[
2
,
2
,
1
],
math_inst
,
min_cc
,
max_cc
),
]
data_type
=
[
math_inst
.
element_a
,
math_inst
.
element_b
,
math_inst
.
element_accumulator
,
math_inst
.
element_accumulator
,
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type
,
alignment_constraints
,
)
# Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation)
if
math_inst
.
element_a
!=
math_inst
.
element_accumulator
:
data_type_mixed
=
[
math_inst
.
element_a
,
math_inst
.
element_b
,
math_inst
.
element_a
,
math_inst
.
element_accumulator
,
]
CreateGatherGemmScatterOperator
(
manifest
,
layouts
,
tile_descriptions
,
data_type_mixed
,
alignment_constraints
,
)
def
GenerateSM70
(
manifest
,
cuda_version
):
GenerateSM70_TensorOp_884
(
manifest
,
cuda_version
)
class
KernelCfg
:
def
__init__
(
self
,
architectures
,
build_dir
,
cuda_version
,
curr_build_dir
,
disable_full_archs_compilation
,
filter_by_cc
,
generator_target
,
ignore_kernels
,
interface_dir
,
kernel_filter_file
,
kernels
,
operations
,
selected_kernel_list
,
):
self
.
architectures
=
architectures
self
.
build_dir
=
build_dir
self
.
cuda_version
=
cuda_version
self
.
curr_build_dir
=
curr_build_dir
self
.
disable_full_archs_compilation
=
disable_full_archs_compilation
self
.
filter_by_cc
=
filter_by_cc
self
.
generator_target
=
generator_target
self
.
ignore_kernels
=
ignore_kernels
self
.
interface_dir
=
interface_dir
self
.
kernel_filter_file
=
kernel_filter_file
self
.
kernels
=
kernels
self
.
operations
=
operations
self
.
selected_kernel_list
=
selected_kernel_list
if
__name__
==
"__main__"
:
args
=
KernelCfg
(
architectures
=
'70'
,
build_dir
=
sys
.
argv
[
2
],
cuda_version
=
sys
.
argv
[
3
],
curr_build_dir
=
sys
.
argv
[
2
],
disable_full_archs_compilation
=
False
,
filter_by_cc
=
'True'
,
generator_target
=
'library'
,
ignore_kernels
=
''
,
interface_dir
=
None
,
kernel_filter_file
=
None
,
kernels
=
''
,
operations
=
'all'
,
selected_kernel_list
=
None
,
)
manifest
=
GatherGemmScatterManifest
(
args
)
GenerateSM70
(
manifest
,
args
.
cuda_version
)
manifest
.
emit
(
GeneratorTarget
.
Library
)
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_manifest.py
0 → 100644
浏览文件 @
507af1c8
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
from
gather_gemm_scatter_operation
import
(
EmitGatherGemmScatterConfigurationLibrary
,
)
from
library
import
OperationKind
,
OperationKindNames
from
manifest
import
EmitOperationKindLibrary
,
GeneratorTarget
,
Manifest
class
GatherGemmScatterEmitOperationKindLibrary
(
EmitOperationKindLibrary
):
def
__init__
(
self
,
generated_path
,
kind
,
args
):
super
().
__init__
(
generated_path
,
kind
,
args
)
self
.
emitters
=
{
OperationKind
.
Gemm
:
EmitGatherGemmScatterConfigurationLibrary
}
self
.
header_template
=
"#pragma once
\n
#ifdef PADDLE_WITH_CUTLASS
\n
"
self
.
entry_template
=
""
self
.
configuration_prototype_template
=
""
self
.
configuration_template
=
""
self
.
epilogue_template
=
"#endif"
def
__enter__
(
self
):
self
.
operation_path
=
os
.
path
.
join
(
self
.
generated_path
,
OperationKindNames
[
self
.
kind
]
)
os
.
mkdir
(
self
.
operation_path
)
self
.
top_level_path
=
os
.
path
.
join
(
self
.
operation_path
,
"all_%s_operations.h"
%
OperationKindNames
[
self
.
kind
],
)
self
.
top_level_file
=
open
(
self
.
top_level_path
,
"w"
)
self
.
top_level_file
.
write
(
self
.
header_template
)
self
.
source_files
=
[
self
.
top_level_path
,
]
return
self
def
emit
(
self
,
configuration_name
,
operations
):
with
self
.
emitters
[
self
.
kind
](
self
.
operation_path
,
configuration_name
)
as
configuration_emitter
:
for
operation
in
operations
:
configuration_emitter
.
emit
(
operation
)
self
.
source_files
.
append
(
configuration_emitter
.
configuration_path
)
self
.
configurations
.
append
(
configuration_name
)
self
.
top_level_file
.
write
(
'#include "'
+
self
.
operation_path
+
'/'
+
configuration_name
+
'.h"
\n
'
)
class
GatherGemmScatterManifest
(
Manifest
):
def
emit
(
self
,
target
=
GeneratorTarget
.
Library
):
operation_emitters
=
{
GeneratorTarget
.
Library
:
GatherGemmScatterEmitOperationKindLibrary
}
generated_path
=
os
.
path
.
join
(
self
.
curr_build_dir
,
'generated'
)
# create generated/
if
os
.
path
.
exists
(
generated_path
):
shutil
.
rmtree
(
generated_path
)
os
.
mkdir
(
generated_path
)
source_files
=
[]
# for each operation kind, emit initializer for all configurations
for
operation_kind
,
configurations
in
self
.
operations
.
items
():
with
operation_emitters
[
target
](
generated_path
,
operation_kind
,
self
.
args
)
as
operation_kind_emitter
:
for
configuration_name
,
operations
in
configurations
.
items
():
operation_kind_emitter
.
emit
(
configuration_name
,
operations
)
source_files
+=
operation_kind_emitter
.
source_files
paddle/phi/kernels/sparse/gpu/cutlass/gather_gemm_scatter_operation.py
0 → 100644
浏览文件 @
507af1c8
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
enum
import
os.path
from
gemm_operation
import
(
EmitGemmConfigurationLibrary
,
EmitGemmInstance
,
EpilogueFunctor
,
GemmOperation
,
SwizzlingFunctor
,
)
from
library
import
(
ComplexTransformTag
,
DataTypeSize
,
DataTypeTag
,
EpilogueFunctorTag
,
GemmKind
,
LayoutTag
,
LayoutType
,
MathOperationTag
,
OpcodeClassTag
,
SubstituteTemplate
,
SwizzlingFunctorTag
,
)
class
EmitGatherGemmScatterInstance
(
EmitGemmInstance
):
def
__init__
(
self
,
operation_suffix
=
''
):
self
.
operation_suffix
=
operation_suffix
self
.
includes
=
[
"cutlass/cutlass.h"
,
"cutlass/numeric_types.h"
,
"cutlass/arch/arch.h"
,
"cutlass/arch/mma.h"
,
"cutlass/layout/matrix.h"
,
"cutlass/gemm/device/gemm.h"
,
"cutlass/gemm/device/gemm_universal_adapter.h"
,
"cutlass/gemm/kernel/default_gemm_universal.h"
,
]
self
.
builtin_epilogue_functor_template
=
"""
${epilogue_functor}<
${element_c},
${epilogue_vector_length},
${element_accumulator},
${element_epilogue}
>
"""
self
.
gemm_template
=
"""
// Gemm operator ${operation_name}
struct ${operation_name} {
using Gemm =
cutlass::gemm::device::GemmUniversal<
${element_a},
${layout_a},
${element_b},
${layout_b},
${element_c},
${layout_c},
${element_accumulator},
${opcode_class},
${arch},
cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>,
cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>,
cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>,
${epilogue_functor},
${swizzling_functor},
${stages},
${align_a},
${align_b},
${math_operation},
${transform_a},
${transform_b},
true, // gather a
false, // gather b
true // scatter d
>;
};
"""
def
instance_template
(
self
):
return
""
def
emit
(
self
,
operation
):
threadblock_shape
=
operation
.
tile_description
.
threadblock_shape
warp_count
=
operation
.
tile_description
.
warp_count
warp_shape
=
[
threadblock_shape
[
idx
]
//
warp_count
[
idx
]
for
idx
in
range
(
3
)
]
transpose_layouts
=
{
LayoutType
.
ColumnMajor
:
LayoutType
.
ColumnMajor
,
LayoutType
.
RowMajor
:
LayoutType
.
RowMajor
,
}
if
(
operation
.
A
.
layout
in
transpose_layouts
.
keys
()
and
operation
.
B
.
layout
in
transpose_layouts
.
keys
()
and
operation
.
C
.
layout
in
transpose_layouts
.
keys
()
):
instance_layout_A
=
transpose_layouts
[
operation
.
A
.
layout
]
instance_layout_B
=
transpose_layouts
[
operation
.
B
.
layout
]
instance_layout_C
=
transpose_layouts
[
operation
.
C
.
layout
]
gemm_template
=
self
.
gemm_template
else
:
instance_layout_A
,
instance_layout_B
,
instance_layout_C
=
(
operation
.
A
.
layout
,
operation
.
B
.
layout
,
operation
.
C
.
layout
,
)
gemm_template
=
self
.
gemm_template_interleaved
# Support built-in epilogue functors or user-defined functions
if
isinstance
(
operation
.
epilogue_functor
,
enum
.
Enum
):
epilogue_vector_length
=
(
min
(
operation
.
C
.
alignment
*
DataTypeSize
[
operation
.
C
.
element
],
128
,
)
//
DataTypeSize
[
operation
.
C
.
element
]
)
values
=
{
'epilogue_vector_length'
:
str
(
epilogue_vector_length
),
'element_epilogue'
:
str
(
DataTypeTag
[
operation
.
element_epilogue
]
),
'epilogue_functor'
:
EpilogueFunctorTag
[
operation
.
epilogue_functor
],
}
epilogue_functor
=
SubstituteTemplate
(
self
.
builtin_epilogue_functor_template
,
values
)
else
:
epilogue_functor
=
self
.
epilogue_functor
.
emit_declaration
()
values
=
{
'operation_name'
:
operation
.
procedural_name
(),
'operation_suffix'
:
self
.
operation_suffix
,
'element_a'
:
DataTypeTag
[
operation
.
A
.
element
],
'layout_a'
:
LayoutTag
[
instance_layout_A
],
'element_b'
:
DataTypeTag
[
operation
.
B
.
element
],
'layout_b'
:
LayoutTag
[
instance_layout_B
],
'element_c'
:
DataTypeTag
[
operation
.
C
.
element
],
'layout_c'
:
LayoutTag
[
instance_layout_C
],
'element_accumulator'
:
DataTypeTag
[
operation
.
accumulator_type
()],
'opcode_class'
:
OpcodeClassTag
[
operation
.
tile_description
.
math_instruction
.
opcode_class
],
'arch'
:
"cutlass::arch::Sm%d"
%
operation
.
arch
,
'threadblock_shape_m'
:
str
(
operation
.
tile_description
.
threadblock_shape
[
0
]
),
'threadblock_shape_n'
:
str
(
operation
.
tile_description
.
threadblock_shape
[
1
]
),
'threadblock_shape_k'
:
str
(
operation
.
tile_description
.
threadblock_shape
[
2
]
),
'warp_shape_m'
:
str
(
warp_shape
[
0
]),
'warp_shape_n'
:
str
(
warp_shape
[
1
]),
'warp_shape_k'
:
str
(
warp_shape
[
2
]),
'instruction_shape_m'
:
str
(
operation
.
tile_description
.
math_instruction
.
instruction_shape
[
0
]
),
'instruction_shape_n'
:
str
(
operation
.
tile_description
.
math_instruction
.
instruction_shape
[
1
]
),
'instruction_shape_k'
:
str
(
operation
.
tile_description
.
math_instruction
.
instruction_shape
[
2
]
),
'epilogue_functor'
:
epilogue_functor
,
'swizzling_functor'
:
SwizzlingFunctorTag
[
operation
.
swizzling_functor
],
'stages'
:
str
(
operation
.
tile_description
.
stages
),
'align_a'
:
str
(
operation
.
A
.
alignment
),
'align_b'
:
str
(
operation
.
B
.
alignment
),
'transform_a'
:
ComplexTransformTag
[
operation
.
A
.
complex_transform
],
'transform_b'
:
ComplexTransformTag
[
operation
.
B
.
complex_transform
],
'math_operation'
:
MathOperationTag
[
operation
.
tile_description
.
math_instruction
.
math_operation
],
}
return
SubstituteTemplate
(
gemm_template
,
values
)
class
EmitGatherGemmScatterConfigurationLibrary
(
EmitGemmConfigurationLibrary
):
def
__init__
(
self
,
operation_path
,
configuration_name
):
self
.
configuration_name
=
configuration_name
self
.
configuration_path
=
os
.
path
.
join
(
operation_path
,
"%s.h"
%
configuration_name
).
replace
(
'
\\
'
,
'/'
)
self
.
instance_emitter
=
{
GemmKind
.
Universal
:
EmitGatherGemmScatterInstance
,
}
self
.
gemm_kind_wrappers
=
{
GemmKind
.
Universal
:
'GemmUniversalOperation'
,
}
self
.
wmma_guard_start
=
(
"#if defined(CUTLASS_ARCH_WMMA_SM${sm_number}_ENABLED)"
)
self
.
separator
=
"""
///////////////////////////////////////////////////////////////////////////////////////////////////
"""
self
.
header_template
=
"""
/*
Generated by gemm_operation.py - Do not edit.
*/
#pragma once
#ifdef PADDLE_WITH_CUTLASS
"""
self
.
namespace_template
=
"""
namespace phi {
namespace sparse {
"""
self
.
epilogue_template
=
"""
} // namespace sparse
} // namespace phi
#endif
"""
def
__exit__
(
self
,
exception_type
,
exception_value
,
traceback
):
# Write includes
for
incl
,
_
in
self
.
includes
.
items
():
include_statement
=
"#include
\"
%s
\"\n
"
%
incl
self
.
configuration_file
.
write
(
include_statement
)
self
.
configuration_file
.
write
(
self
.
separator
)
self
.
configuration_file
.
write
(
self
.
namespace_template
)
# Write instance definitions in top-level namespace
for
instance_definition
in
self
.
instance_definitions
:
self
.
configuration_file
.
write
(
instance_definition
)
for
instance_wrapper
in
self
.
instance_wrappers
:
self
.
configuration_file
.
write
(
instance_wrapper
)
self
.
configuration_file
.
write
(
self
.
epilogue_template
)
self
.
configuration_file
.
close
()
class
GatherGemmScatterOperation
(
GemmOperation
):
# cutlass transpose A and B in the library.py, so we transpose it back here
def
__init__
(
self
,
gemm_kind
,
arch
,
tile_description
,
A
,
B
,
C
,
element_epilogue
,
epilogue_functor
=
EpilogueFunctor
.
LinearCombination
,
swizzling_functor
=
SwizzlingFunctor
.
Identity8
,
):
super
().
__init__
(
gemm_kind
,
arch
,
tile_description
,
A
,
B
,
C
,
element_epilogue
,
epilogue_functor
=
EpilogueFunctor
.
LinearCombination
,
swizzling_functor
=
SwizzlingFunctor
.
Identity8
,
)
self
.
ShortLayoutTypeNames
=
{
LayoutType
.
ColumnMajor
:
't'
,
LayoutType
.
ColumnMajorInterleaved2
:
't2'
,
LayoutType
.
ColumnMajorInterleaved32
:
't32'
,
LayoutType
.
ColumnMajorInterleaved64
:
't64'
,
LayoutType
.
RowMajor
:
'n'
,
LayoutType
.
RowMajorInterleaved2
:
'n2'
,
LayoutType
.
RowMajorInterleaved32
:
'n32'
,
LayoutType
.
RowMajorInterleaved64
:
'n64'
,
LayoutType
.
TensorNHWC
:
'nhwc'
,
LayoutType
.
TensorNDHWC
:
'ndhwc'
,
LayoutType
.
TensorNCHW
:
'nchw'
,
LayoutType
.
TensorNGHWC
:
'nghwc'
,
LayoutType
.
TensorNC32HW32
:
'nc32hw32'
,
LayoutType
.
TensorNC64HW64
:
'nc64hw64'
,
LayoutType
.
TensorC32RSK32
:
'c32rsk32'
,
LayoutType
.
TensorC64RSK64
:
'c64rsk64'
,
}
def
layout_name
(
self
):
return
"%s%s"
%
(
self
.
ShortLayoutTypeNames
[
self
.
A
.
layout
],
self
.
ShortLayoutTypeNames
[
self
.
B
.
layout
],
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录